Annu Int Conf IEEE Eng Med Biol Soc
July 2024
The autonomic and central nervous systems influence each other quite significantly. Previous efforts attempting to quantitatively characterize this profound connection by linking electroencephalographic power in specific frequency bands with heart rate variability produced associations with unclear psychophysiological significance. This study introduces an innovative approach using a virtual reality emotional protocol aimed at unraveling brain-heart interactions.
View Article and Find Full Text PDFRecombinant tissue plasminogen activator (rtPA) remains the standard thrombolytic treatment for ischemic stroke. Different types of nanoparticles have emerged as promising tools to improve the benefits and decrease the drawbacks of this therapy. Among them, cell membrane-derived (CMD) nanomedicines have gained special interest due to their capability to increase the half-life of particles in blood, biocompatibility, and thrombus targeting.
View Article and Find Full Text PDFMetal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.
View Article and Find Full Text PDFBackground: Acoustic challenges impose demands on cognitive resources, known as listening effort (LE), which can substantially influence speech perception and communication. Standardized assessment protocols for monitoring LE are lacking, hindering the development of adaptive hearing assistive technology.
New Method: We employed an adaptive protocol, including a speech-in-noise test and personalized definition of task demand, to assess LE and its physiological correlates.
This investigation demonstrates the development and functionality of cell membrane-cloaked UiO-67 nanosized metal-organic frameworks (NMOFs), which are engineered for precise intracellular delivery of encapsulated cargoes. Utilizing the robust and porous nature of UiO-67, we enveloped these NMOFs with fusogenic cell membrane-derived nanovesicles (FCSMs) sourced from adenocarcinomic human alveolar basal epithelial (A549) cells. This biomimetic coating enhances biocompatibility and leverages the homotypic targeting capabilities of the cell-derived coatings, facilitating direct cytoplasmic delivery and avoiding endolysosomal entrapment.
View Article and Find Full Text PDFThe blood enzyme glutamate-oxaloacetate transaminase (GOT) has been postulated as an effective therapeutic to protect the brain during stroke. To demonstrate its potential clinical utility, a new human recombinant form of GOT (rGOT) was produced for medical use. We tested the pharmacokinetics and evaluated the protective efficacy of rGOT in rodent and non-human primate models that reflected clinical stroke conditions.
View Article and Find Full Text PDFWhile stroke represents one of the main causes of death worldwide, available effective drug treatment options remain limited to classic thrombolysis with recombinant tissue plasminogen activator (rtPA) for arterial-clot occlusion. Following stroke, multiple pathways become engaged in producing a vicious proinflammatory cycle through the release of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1) and heat shock protein 70 kDa (HSP72). HMGB1, in particular, can activate proinflammatory cytokine production when acetylated (AcHMGB1), a form that prefers cytosolic localization and extracellular release.
View Article and Find Full Text PDFBackground: Intravenous administration of fibrinolytic drugs, such as recombinant tissue plasminogen activator (rtPA) is the standard treatment of acute thrombotic diseases. However, current fibrinolytics exhibit limited clinical efficacy because of their short plasma half-lives and risk of hemorrhagic transformations. Platelet membrane-based nanocarriers have received increasing attention for ischemic stroke therapies, as they have natural thrombus-targeting activity, can prolong half-life of the fibrinolytic therapy, and reduce side effects.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
December 2023
The study of emotions through the analysis of the induced physiological responses gained increasing interest in the past decades. Emotion-related studies usually employ films or video clips, but these stimuli do not give the possibility to properly separate and assess the emotional content provided by sight or hearing in terms of physiological responses. In this study we have devised an experimental protocol to elicit emotions by using, separately and jointly, pictures and sounds from the widely used International Affective Pictures System and International Affective Digital Sounds databases.
View Article and Find Full Text PDFThe WHISPER (Widespread Hearing Impairment Screening and PrEvention of Risk) platform was recently developed for screening for hearing loss (HL) and cognitive decline in adults. It includes a battery of tests (a risk factors (RF) questionnaire, a language-independent speech-in-noise test, and cognitive tests) and provides a pass/fail outcome based on the analysis of several features. Earlier studies demonstrated high accuracy of the speech-in-noise test for predicting HL in 350 participants.
View Article and Find Full Text PDFA surface-engineered cell-derived nanocarrier was developed for efficient cytosolic delivery of encapsulated biologically active molecules inside living cells. Thus, a combination of aromatic-labeled and cationic lipids, instrumental in providing fusogenic properties, was intercalated into the biomimetic shell of self-assembled nanocarriers formed from cell membrane extracts. The nanocarriers were loaded, as a proof of concept, with either bisbenzimide molecules, a fluorescently labeled dextran polymer, the bicyclic heptapeptide phalloidin, fluorescently labeled polystyrene nanoparticles or a ribonucleoprotein complex (Cas9/sgRNA).
View Article and Find Full Text PDFThe engagement with the immune system is one of the main cornerstones in the development of nanotechnologies for therapy and diagnostics. Recent advances have made possible the tuning of features like size, shape and biomolecular modifications that influence such interactions, however, the capabilities for immune modulation of nanoparticles are still not well defined and exploited. This review focuses on recent advances made in preclinical research for the application of nanoparticles to modulate immune responses, and the main features making them relevant for such applications.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are extremely versatile materials, which serve to create platforms with exceptional porosity and specific reactivities. The production of MOFs at the nanoscale (NMOFs) offers the possibility of creating innovative materials for bioapplications as long as they maintain the properties of their larger counterparts. Due to their inherent chemical versatility, synthetic methods to produce them at the nanoscale can be combined with inorganic nanoparticles (NPs) to create nanocomposites (NCs) with one-of-a-kind features.
View Article and Find Full Text PDFThe benefit of adding the antiangiogenic drug aflibercept to FOLFIRI regime in metastatic colorectal cancer (CRC) patients resistant to or progressive on an oxaliplatin-based therapy has been previously demonstrated. However, the absence of validated biomarkers to predict greater outcomes is a major challenge encountered when using antiangiogenic therapies. In this study we investigated profiles of circulating microRNAs (miRNAs) to build predictive models of response to treatment and survival.
View Article and Find Full Text PDFAlthough the Amazon has the greatest diversity of primates, there are still taxonomic uncertainties for many taxa, such as the species of the group. The most geographically broadly distributed and phenotypically diverse species in this group is . , and its phenotypic diversity has been recognized as three subspecies-.
View Article and Find Full Text PDFNanoparticles have now long demonstrated capabilities that make them attractive to use in biology and medicine. Some of them, such as lipid nanoparticles (SARS-CoV-2 vaccines) or metallic nanoparticles (contrast agents) are already approved for their use in the clinic. However, considering the constantly growing body of different formulations and the huge research around nanomaterials the number of candidates reaching clinical trials or being commercialized is minimal.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Emotions processing is a complex mechanism that involves different physiological systems. In particular, the Central Nervous System (CNS) is considered to play a key role in this mechanism and one of the main modalities to study the CNS activity is the Electroencephalographic signal (EEG). To elicit emotions, different kinds of stimuli can be used e.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Many studies in the literature attempt recognition of emotions through the use of videos or images, but very few have explored the role that sounds have in evoking emotions. In this study we have devised an experimental protocol for elicitation of emotions by using, separately and jointly, images and sounds from the widely used International Affective Pictures System and International Affective Digital Sounds databases. During the experiments we have recorded the skin conductance and pupillary signals and processed them with the goal of extracting indices linked to the autonomic nervous system, thus revealing specific patterns of behavior depending on the different stimulation modalities.
View Article and Find Full Text PDFPurpose: The aim of this study was to analyze the performance of multivariate machine learning (ML) models applied to a speech-in-noise hearing screening test and investigate the contribution of the measured features toward hearing loss detection using explainability techniques.
Method: Seven different ML techniques, including transparent (i.e.
The synthesis of nanosized metal-organic frameworks (NMOFs) is requisite for their application as injectable drug delivery systems (DDSs) and other biorelevant purposes. Herein, we have critically examined the role of different synthetic parameters leading to the production of UiO-66 crystals smaller than 100 nm. Of note, we demonstrate the co-modulator role conferred by halide ions, not only to produce NMOFs with precise morphology and size, but also to significantly improve the reaction yield.
View Article and Find Full Text PDFBackground: Ischemic stroke is the most common cerebrovascular disease and is caused by interruption of blood supply to the brain. To date, recombinant tissue plasminogen activator (rtPA) has been the main pharmacological treatment in the acute phase. However, this treatment has some drawbacks, such as a short half-life, low reperfusion rate, risk of hemorrhagic transformations, and neurotoxic effects.
View Article and Find Full Text PDFBackground: Aflibercept is an antiangiogenic drug against metastatic colorectal cancer (mCRC) combined with 5-fluorouracil/leucovorin/irinotecan (FOLFIRI); however, no antiangiogenic biomarker has yet been validated. We assessed aflibercept plus FOLFIRI, investigating the biomarker role of baseline vascular endothelial growth factor A (VEGF-A) and angiotensin-converting enzyme (ACE).
Methods: Phase II trial in oxaliplatin-treated mCRC patients who received aflibercept plus FOLFIRI.