Publications by authors named "Pollyana M S Melo"

Malignant melanoma is the main cause of death in patients with skin cancer. Overexpression of Proteolipid protein 2 (PLP2) increased tumor metastasis and the knockdown of PLP2 inhibited the growth and metastasis of melanoma cells. In the present work, we studied the antitumor activity of peptide Rb4 derived from protein PLP2.

View Article and Find Full Text PDF

, the most virulent of the human malaria parasite, is responsible for high mortality rates worldwide. We studied the M1 alanyl-aminopeptidase of this protozoan (PfA-M1), which is involved in the final stages of hemoglobin cleavage, an essential process for parasite survival. Aiming to help in the rational development of drugs against this target, we developed a new strain of overexpressing PfA-M1 without the signal peptide (overPfA-M1).

View Article and Find Full Text PDF

Background: The intra-erythrocytic development of the malaria parasite Plasmodium falciparum depends on the uptake of a number of essential nutrients from the host cell and blood plasma. It is widely recognized that the parasite imports low molecular weight solutes from the plasma and the consumption of these nutrients by P. falciparum has been extensively analysed.

View Article and Find Full Text PDF

Background: Malaria represents a worldwide medical emergency affecting mainly poor areas. Plasmodium parasites during blood stages can release kinins to the extracellular space after internalization of host kininogen inside erythrocytes and these released peptides could represent an important mechanism in liver pathophysiology by activation of calcium signaling pathway in endothelial cells of vertebrate host. Receptors (B1 and B2) activated by kinins peptides are important elements for the control of haemodynamics in liver and its physiology.

View Article and Find Full Text PDF

Malaria is a disease caused by Plasmodium parasites that affects hundreds of millions of people. Plasmodium proteases are involved in invasion, erythrocyte egress and degradation of host proteins. Falcipains are well-studied cysteine peptidases located in P.

View Article and Find Full Text PDF

Malaria is a global human parasitic disease mainly caused by the protozoon Plasmodium falciparum. Increased parasite resistance to current drugs determines the relevance of finding new treatments against new targets. A novel target is the M1 alanyl-aminopeptidase from P.

View Article and Find Full Text PDF

Hypervalent organotellurium compounds (organotelluranes) have shown several promising applications, including their use as potent and selective cysteine protease inhibitors and antiprotozoal agents. Here, we report the antimalarial activities of three organotellurane derivatives (RF05, RF07 and RF19) in two Plasmodium falciparum strains (CQS 3D7 and CQR W2), which demonstrated significant decreases in parasitemia in vitro. The inhibition of intracellular P.

View Article and Find Full Text PDF

Malaria is a disease caused by Plasmodium parasites and remains one of the most prevalent and persistent maladies, affecting hundreds of millions of people. In the present work, we evaluated the capability of Plasmodium falciparum proteases to hydrolyze the multifunctional protein plasminogen, which is implicated in angiogenesis and coagulation processes by the generation of angiostatin and plasmin, respectively. Using fluorescence microscopy, we visualized the internalization of FITC-labeled plasminogen in erythrocytes infected by P.

View Article and Find Full Text PDF

We studied the substrate specificity requirements of recombinant cysteine peptidases from Plasmodium falciparum, falcipain-2 (FP-2) and falcipain-3 (FP-3), using fluorescence resonance energy transfer (FRET) peptides as substrates. Systematic modifications were introduced in the lead sequence Abz-KLRSSKQ-EDDnp (Abz=ortho-aminobenzoic acid; EDDnp=N-[2,4-dinitrophenyl]ethylenediamine) resulting in five series assayed to map S3-S'2 subsite specificity. Despite high sequence identity and structural similarity between FP-2 and FP-3, noteworthy differences in substrate specificity were observed.

View Article and Find Full Text PDF