Rationale And Objectives: Active surveillance (AS) is the preferred management strategy for low-risk prostate cancer. This study aimed to evaluate the impact of Habitat Risk Score (HRS), an automated approach for mpMRI analysis, for early detection of progressors in a prospective AS clinical trial (MAST NCT02242773).
Materials And Methods: The MAST protocol includes Confirmatory mpMRI ultrasound fusion (MRI-US) biopsy and yearly surveillance MRI-US biopsies for up to 3 years.
Background And Objective: Prostate cancer (PC) heterogeneity can result in sampling discrepancies during biopsy, leading to inaccurate molecular classifications that affect treatment decisions. We evaluated transcriptomic profile variability between multiparametric magnetic resonance imaging (mpMRI)-targeted biopsy (TBx) and systematic biopsy (SBx) methods using the Decipher GRID platform.
Methods: The study included 205 men from the MAST trial.
Purpose: The aim of this study is to develop a framework for quantitative analysis of longitudinal T2-weighted MRIs (T2w) following radiotherapy (RT) for prostate cancer.
Materials And Methods: The developed methodology includes: deformable image registration of longitudinal series to pre-RT T2w for automated detection of prostate, peripheral zone (PZ), and gross tumor volume (GTV); and T2w signal-intensity harmonization based on three reference tissues. The gistration and onization () framework was applied on T2w acquired in a clinical trial consisting of two pre-RT and three post-RT MRI exams.
Background And Objective: Long-term (LT) androgen deprivation therapy (ADT) has been found to be beneficial to patients with high-risk prostate cancer (PCa). However, administration of LT-ADT to all patients with high-risk PCa may lead to overtreatment. Enhanced risk stratification using genomic classifiers (such as the recently developed prostate subtyping classifier [PSC]) might be useful.
View Article and Find Full Text PDFProstate Cancer Prostatic Dis
September 2024
Background: 4Kscore is used to aid the decision for prostate biopsy, however its role in active surveillance (AS) has not been investigated in a magnetic resonance imaging (MRI)-based protocol. Our objective was to assess the association between 4Kscore and progression in men undergoing AS on a prospective MRI-based protocol.
Methods: This was a single-institution, single-arm, non-therapeutic, interventional trial of 166 men with biopsy-confirmed prostate cancer enrolled between 2014-2020.
ACS Pharmacol Transl Sci
September 2024
Mainstream treatment modalities which dominate the therapeutic landscape of prostate cancer (PCa) are prostatectomy, radiation therapy, and androgen deprivation therapy (ADT) or castration. These therapeutic options can extend the life expectancy of the patients but eventually fail to completely cure the disease. Despite undergoing ADT, patients still experience disease recurrence.
View Article and Find Full Text PDFJMIR Cancer
September 2024
Chemoradiation therapy (CRT) is a treatment for muscle-invasive bladder cancer (MIBC). Using a novel transcriptomic profiling panel, we validated prognostic immune biomarkers to CRT using 70 pretreatment tumor samples from prospective trials of MIBC (NRG/RTOG 0524 and 0712). Disease-free survival (DFS) and overall survival (OS) were estimated via the Kaplan-Meier method and stratified by genes correlated with immune cell activation.
View Article and Find Full Text PDFAm J Clin Pathol
July 2024
Objectives: There are 2 grading approaches to radical prostatectomy (RP) in multifocal cancer: Grade Group (GG) and percentage of Gleason pattern 4 (GP4%). We investigated whether RP GG and GP4% generated by global vs individual tumor grading correlate differently with biochemical recurrence.
Methods: We reviewed 531 RP specimens with GG2 or GG3 cancer.
Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment.
View Article and Find Full Text PDFQuantitative T2-weighted MRI (T2W) interpretation is impeded by the variability of acquisition-related features, such as field strength, coil type, signal amplification, and pulse sequence parameters. The main purpose of this work is to develop an automated method for prostate T2W intensity normalization. The procedure includes the following: (i) a deep learning-based network utilizing MASK R-CNN for automatic segmentation of three reference tissues: gluteus maximus muscle, femur, and bladder; (ii) fitting a spline function between average intensities in these structures and reference values; and (iii) using the function to transform all T2W intensities.
View Article and Find Full Text PDFThe utilization of multi-parametric MRI (mpMRI) in clinical decisions regarding prostate cancer patients' management has recently increased. After biopsy, clinicians can assess risk using National Comprehensive Cancer Network (NCCN) risk stratification schema and commercially available genomic classifiers, such as Decipher. We built radiomics-based models to predict lesions/patients at low risk prior to biopsy based on an established three-tier clinical-genomic classification system.
View Article and Find Full Text PDFIn vivo imaging has enabled impressive advances in biological research, both preclinical and clinical, and researchers have an arsenal of imaging methods available. Bioluminescence imaging is an advantageous method for in vivo studies that allows for the simple acquisition of images with low background signals. Researchers have increasingly been looking for ways to improve bioluminescent imaging for in vivo applications, which we sought to achieve by developing a bioluminescent probe that could specifically target cells of interest.
View Article and Find Full Text PDFBackground: Radiation nephropathy (RN) can be a severe late complication for patients treated with radiotherapy (RT) targeting abdominal and paraspinal tumors. Recent studies investigating the mechanisms of RT-mediated injury in the kidney have demonstrated that RT disrupts the cellular integrity of renal podocytes leading to cell death and loss of renal function.
Aim: To determine if RT-induced renal dysfunction is associated with alterations in podocyte and glomerular function, and whether RT-induced podocyte alterations were associated with changes in the glomerular basement membrane (GBM).
Background: Patients with localized prostate cancer have historically been assigned to clinical risk groups based on local disease extent, serum prostate specific antigen (PSA), and tumor grade. Clinical risk grouping is used to determine the intensity of treatment with external beam radiotherapy (EBRT) and androgen deprivation therapy (ADT), yet a substantial proportion of patients with intermediate and high risk localized prostate cancer will develop biochemical recurrence (BCR) and require salvage therapy. Prospective identification of patients destined to experience BCR would allow treatment intensification or selection of alternative therapeutic strategies.
View Article and Find Full Text PDFHistopathological classification in prostate cancer remains a challenge with high dependence on the expert practitioner. We develop a deep learning (DL) model to identify the most prominent Gleason pattern in a highly curated data cohort and validate it on an independent dataset. The histology images are partitioned in tiles (14,509) and are curated by an expert to identify individual glandular structures with assigned primary Gleason pattern grades.
View Article and Find Full Text PDFUsing active tumor-targeting nanoparticles, fluorescence imaging can provide highly sensitive and specific tumor detection, and precisely guide radiation in translational radiotherapy study. However, the inevitable presence of non-specific nanoparticle uptake throughout the body can result in high levels of heterogeneous background fluorescence, which limits the detection sensitivity of fluorescence imaging and further complicates the early detection of small cancers. In this study, background fluorescence emanating from the baseline fluorophores was estimated from the distribution of excitation light transmitting through tissues, by using linear mean square error estimation.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
July 2023
Purpose: Decipher is a genomic classifier (GC) prospectively validated postprostatectomy. We validated the performance of the GC in pretreatment biopsy samples within the context of 3 randomized phase 3 high-risk definitive radiation therapy trials.
Methods And Materials: A prespecified analysis plan (NRG-GU-TS006) was approved to obtain formalin-fixed paraffin-embedded tissue from biopsy specimens from the NRG biobank from patients enrolled in the NRG/Radiation Therapy Oncology Group (RTOG) 9202, 9413, and 9902 phase 3 randomized trials.
Purpose: The objective of this study was to determine whether limiting the doses delivered to the penile bulb (PB) and corporal bodies with intensity modulated radiation therapy (IMRT) preserves erectile function compared with standard IMRT in men with prostate cancer.
Methods And Materials: A total of 117 patients with low- to intermediate-risk, clinical T1a-T2c prostate adenocarcinoma were enrolled in a single-institution, prospective, single-blind, phase 3 randomized trial. All received definitive IMRT to 74 to 80 Gy in 37 to 40 fractions and standard IMRT (s-IMRT) or erectile tissue-sparing IMRT (ETS-IMRT), which placed additional planning constraints that limited the D90 to the penile bulb and corporal bodies to ≤15 Gy and ≤7 Gy, respectively.
Metal nanoparticles are effective radiosensitizers that locally enhance radiation doses in targeted cancer cells. Compared with other metal nanoparticles, gold nanoparticles (GNPs) exhibit high biocompatibility, low toxicity, and they increase secondary electron scatter. Herein, we investigated the effects of active-targeting GNPs on the radiation-induced bystander effect (RIBE) in prostate cancer cells.
View Article and Find Full Text PDFIntroduction: Understanding if divergent molecular profiles of DNA damage and repair (DDR) pathway activity, a biomarker of disease progression, exist in prostate tumors with favorable-risk features is an unmet need, which this study aim to unearth.
Materials And Methods: This was a multicenter registry genome-wide expression profiling study of prospectively collected radical prostatectomy (RP) tumor samples from 2014 to 2016. DDR activity was calculated from average expression of 372 DDR genes.
Purpose: We aimed to identify subgroups of Hispanic/Latino (H/L) cancer survivors with distinct health behavior patterns and their associated sociodemographic, medical, and psychosocial characteristics.
Methods: Baseline data were used from a randomized clinical trial evaluating the efficacy of an enhanced patient navigation intervention in H/L cancer survivors. Participants (n = 278) completed the Lifestyle Behavior Scale and validated questionnaires on health-related quality of life (HRQOL), supportive care needs, distress, and satisfaction with cancer care.
Active targeting gold nanoparticles (AuNPs) are a very promising avenue for cancer treatment with many publications on AuNP mediated radiosensitization at kilovoltage (kV) photon energies. However, uncertainty on the effectiveness of AuNPs under clinically relevant megavoltage (MV) radiation energies hinders the clinical translation of AuNP-assisted radiation therapy (RT) paradigm. The aim of this study was to investigate radiosensitization mediated by PSMA-targeted AuNPs irradiated by a 6 MV radiation beam at different depths to explore feasibility of AuNP-assisted prostate cancer RT under clinically relevant conditions.
View Article and Find Full Text PDFBackground: To assess the impact of systematic setup and range uncertainties for robustly optimized (RO) intensity modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans in patients with localized prostate cancer.
Methods: Twenty-six localized prostate patients previously treated with VMAT (CTV to PTV expansion of 3-5 mm) were re-planned with RO-IMPT with 3 mm and 5 mm geometrical uncertainties coupled with 3% range uncertainties. Robust evaluations (RE) accounting for the geometrical uncertainties of 3 and 5 mm were evaluated for the IMPT and VMAT plans.