Thin-film membranes of Pd-Ag and Pd-Cu alloys capable of releasing hydrogen in a wide temperature range have been developed. The surface activation of the membranes with a nanostructured coating made it possible to intensify hydrogen transport through Pd-containing membranes at low temperatures. This effect was achieved by accelerating limiting surface processes by increasing the active area of the membrane.
View Article and Find Full Text PDFA unique method for synthesizing a surface modifier for metallic hydrogen permeable membranes based on non-classic bimetallic pentagonally structured Pd-Pt nanoparticles was developed. It was found that nanoparticles had unique hollow structures. This significantly reduced the cost of their production due to the economical use of metal.
View Article and Find Full Text PDFThin Pd-40%Cu films were obtained via the classical melting and rolling method, magnetron sputtering, and modified with nanostructured functional coatings to intensify the process of hydrogen transportation. The films were modified by electrodeposition, according to the classical method of obtaining palladium black and "Pd-Au nanoflowers" with spherical and pentagonal particles, respectively. The experiment results demonstrated the highest catalytic activity (89.
View Article and Find Full Text PDFA controlled strategy for the electrochemical synthesis of mono- and bimetallic nanoparticles with a unique and complex morphology has been developed. The investigation of the effect of changing the surfactant concentration and current density regulating the medium pH has revealed the fundamental patterns of nanoparticle growth. The developed method has allowed to synthesis of nanoparticles with a controlled pentabranched structure for the monometallic palladium as well as for favorable combinations of metals-Pd-Ag and Pd-Pt.
View Article and Find Full Text PDFA method for obtaining composite gas-diffusion PdCu-Nb-PdCu membranes modified with a nanostructured crystalline coating was developed to increase the performance of Nb-based membranes. A modifying functional layer with a controlled size and composition was synthesized by electrochemical deposition, which made it possible to determine a certain geometric shape for palladium nanocrystallites. Developed PdCu-Nb-PdCu membranes have demonstrated flux values up to 0.
View Article and Find Full Text PDFThe method of synthesis of bimetallic Pd-Ag pentagonally structured catalyst "nanostar" on the surface of Pd-23%Ag alloy films has been developed. The resulting catalyst was studied as a highly active functional layer for methanol oxidation reaction (MOR) in alkaline media and the intensification of hydrogen transport through the Pd-23%Ag membrane in the processes of hydrogen diffusion purification. A modifying layer with a controlled size, composition and excellent electrocatalytic activity was synthesized by electrochemical deposition at a reduced current density compared to classical methods.
View Article and Find Full Text PDF