Publications by authors named "Polina Kuzhir"

Graphite nanoplatelets (GNPs)-the segregated ultra-high molecular weight polyethylene (UHMWPE)-based composites with hybrid filler-decorated with FeO were developed. Using X-ray diffraction and scanning electron microscopy, it was shown that the decorated component has the shape of separate granules, or their clusters were distributed evenly over the GNPs surface. The individual FeO nanoparticles are predominantly rounded, with diameters of approximately 20-60 nm.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have studied the absorption properties of thin films, specifically noting that a 20 nm thick pyrolyzed carbon (PyC) film can significantly enhance absorption rates when placed on a silicon nitride (SiN) membrane.
  • The PyC film increases the absorption of the SiN membrane to 40% in the terahertz range, while the membrane alone is transparent.
  • This discovery of broadband absorption in the PyC film could lead to advancements in the development of bolometric radiation detectors.
View Article and Find Full Text PDF

Direct current plasma enhanced chemical vapor deposition (CVD) was employed to create polycrystalline diamond films from CH/Hgaseous mixture at 98 mbar pressure and various substrate temperatures between 720 °C and 960 °C. The Si chips with patterns of periodic masked and open seeded zones were used as substrates. The mask free seeded areas evolved into polycrystalline diamond films after CVD process.

View Article and Find Full Text PDF

Polyvinyl alcohol is the most commercially water-soluble biodegradable polymer, and it is in use for a wide range of applications. It shows good compatibility with most inorganic/organic fillers, and enhanced composites may be prepared without the need to introduce coupling agents and interfacial modifiers. The patented high amorphous polyvinyl alcohol (HAVOH), commercialized with the trade name G-Polymer, can be easily dispersed in water and melt processed.

View Article and Find Full Text PDF
Article Synopsis
  • * Experimental results indicate that the inclusion of BTO alters the dielectric properties of the composites and affects the temperature at which a dielectric anomaly occurs in the PDMS matrix.
  • * The composites exhibit piezoelectric behavior, generating measurable voltage signals under ultrasonic stress, making them promising candidates for use in efficient, lead-free nanogenerators that convert mechanical vibrations into electrical energy.
View Article and Find Full Text PDF

We propose a simple, fast, and low-cost method for producing Au-coated black Si-based SERS-active substrates with a proven enhancement factor of 10. Room temperature reactive ion etching of silicon wafer followed by nanometer-thin gold sputtering allows the formation of a highly developed lace-type Si surface covered with homogeneously distributed gold islands. The mosaic structure of deposited gold allows the use of Au-uncovered Si domains for Raman peak intensity normalization.

View Article and Find Full Text PDF

Black silicon (bSi) is a highly absorptive material in the UV-vis and NIR spectral range. Photon trapping ability makes noble metal plated bSi attractive for fabrication of surface enhanced Raman spectroscopy (SERS) substrates. By using a cost-effective room temperature reactive ion etching method, we designed and fabricated the bSi surface profile, which provides the maximum Raman signal enhancement under NIR excitation when a nanometrically-thin gold layer is deposited.

View Article and Find Full Text PDF

A systematic spectroscopic characterization of highly homogeneous water suspensions of 'buckydiamonds' comprising spcubic nanodiamond (ND) core covered with disordered spshell densely decorated with oxygen-containing groups demonstrates the excitation-wavelength-dependent photoluminescence (PL) given by at least four types of specific structures on the ND surface (hydroxyl, C=O containing ketones, carboxylic anhydrides, and carboxyl groups). PL properties of NDs suspensions possess concentration-dependent behavior revealing tendency of NDs to agglomerate. PL of NDs has been found to be strongly sensitive to pH of the environment in wide range of pH values, i.

View Article and Find Full Text PDF
Article Synopsis
  • This paper introduces a deep learning method for detecting and classifying organic water pollutants, specifically hydroquinone and benzoquinone, which are tough to distinguish due to similar electroactivity.
  • The detection is performed using low-cost, disposable screen-printed electrodes combined with cyclic voltammetry techniques enhanced by nanomaterials like carbon nanotubes, improving sensitivity by about 25 times.
  • The analysis results are transformed into RGB images through Gramian angular field transformations, allowing a convolutional neural network to achieve 100% accuracy in classifying the pollutants.
View Article and Find Full Text PDF

"Blinking" behavior of fluorophores, being harmful for the majority of super-resolved techniques, turns into a key property for stochastic optical fluctuation imaging and its modifications, allowing one to look at the fluorophores already used in conventional microscopy, such as graphene quantum dots, from a completely new perspective. Here we discuss fluorescence of aggregated ensembles of graphene quantum dots structured at submicron scale. We study temperature dependence and stochastic character of emission.

View Article and Find Full Text PDF

Water pollution is nowadays a global problem and the effective detection of pollutants is of fundamental importance. Herein, a facile, efficient, robust, and rapid (response time < 2 min) method for the determination of important quinone-based industrial pollutants such as hydroquinone and benzoquinone is reported. The recognition method is based on the use of screen-printed electrodes as sensing platforms, enhanced with carbon-based nanomaterials.

View Article and Find Full Text PDF

Fragmented multi-layered graphene films were directly synthesized via chemical vapor deposition (CVD) on dielectric substrates with a pre-deposited copper catalyst. We demonstrate that the thickness of the sacrificial copper film, process temperature, and growth time essentially influence the integrity, quality, and disorder of the synthesized graphene. Atomic force microscopy and Kelvin probe force microscopy measurements revealed the presence of nano-agglomerates and charge puddles.

View Article and Find Full Text PDF

We demonstrated that wide-field second harmonic generation (SHG) microscopy of lung tissue in combination with quantitative analysis of SHG images is a powerful tool for fast and label-free visualization of the fibrosis pathogenesis in pulmonary arterial hypertension (PAH). Statistical analysis of the SHG images revealed changes of the collagen content and morphology in the lung tissue during the monocrotaline-induced PAH progression in rats. First order statistics disclosed the dependence of the collagen overproduction on time, the second order statistics indicated tightening of collagen fiber network around blood vessels and their spreading into the alveolar region.

View Article and Find Full Text PDF

We report the performance of a graphene-enhanced THz grating fabricated by depositing a gold layer on the femtosecond micromachined SiO substrate. The morphology of the gold plated patterned substrate was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), while the quality of the chemical vapor deposition (CVD) graphene was evaluated by Raman spectroscopy. The electromagnetic (EM) response of the metasurface comprising the graphene sheet and the gold plated substrate was studied by THz time domain spectroscopy in the 100 GHz-1 THz frequency range.

View Article and Find Full Text PDF

In living organisms, redox reactions play a crucial role in the progression of disorders accompanied by the overproduction of reactive oxygen and reactive chlorine species, such as hydrogen peroxide and hypochlorous acid, respectively. We demonstrate that green fluorescence graphene quantum dots (GQDs) can be employed for revealing the presence of the hypochlorous acid in aqueous solutions and cellular systems. Hypochlorous acid modifies the oxygen-containing groups of the GQD, predominantly opens epoxide ring C-O-C, forms excessive C=O bonds and damages the carbonic core of GQDs.

View Article and Find Full Text PDF

In this paper we propose an original approach for the real-time detection of industrial organic pollutants in water. It is based on the monitoring of the time evolution of the electrical impedance of low-cost graphitic nanomembranes. The developed approach exploits the high sensitivity of the impedance of 2D graphene-related materials to the adsorbents.

View Article and Find Full Text PDF

We propose an original technique for the fabrication of terahertz (THz) metasurfaces comprising a 3D printed regular array of polymer hemispheres covered with a thin conductive layer. We demonstrate that the deposition of a thin metal layer onto polymer hemispheres suppresses the THz reflectivity to almost zero, while the frequency range of such a suppression can be considerably broadened by enhancing the structure with graphene. Scaling up of the proposed technique makes it possible to tailor the electromagnetic responses of metasurfaces and allows for the fabrication of various components of THz photonics.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) demonstrate a strong potential as an optically activated theranostic nano-agent. However, using SWCNTs in theranostics still requires revealing mechanisms of the SWCNT-mediated effects on cellular functions. Even though rapid and delayed cellular responses can differ significantly and may lead to undesirable consequences, understanding of these mechanisms is still incomplete.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created composite materials with high levels of a specific ferroelectric compound (0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3) mixed into phosphate-bonded ceramics under varying pressures.
  • All samples displayed a consistent distribution of the active ferroelectric phase and maintained thermal stability up to 900 K.
  • The study found that the density of these composites varies in a non-linear way with pressure, with increased density leading to higher dielectric permittivity and strong piezoelectric properties.
View Article and Find Full Text PDF

The patterning of arrays of aligned multi-walled carbon nanotubes (MWCNTs) allows creating metastructures for terahertz (THz) applications. Here, the strips and columns from MWCNTs vertically grown on silicon substrates are prepared using CO laser treatment. The tops of the patterned arrays are flat when the laser power is between 15 and 22 W, and craters appear there with increasing power.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the dielectric and electric properties of epoxy composites containing carbon-coated nickel (Ni@C) and multi-walled carbon nanotubes (MWCNTs) across various temperatures and frequencies.
  • Key findings revealed that the electrical percolation threshold for Ni@C alone was between 10-15 vol.%, making it suitable for electromagnetic shielding applications above this threshold.
  • The research also discovered that a specific concentration of Ni@C (0.2 vol.%) in hybrid composites significantly enhanced conductivity compared to MWCNT-only composites, with electrical transport mechanisms varying with temperature and composite type.
View Article and Find Full Text PDF

We experimentally and theoretically investigated the effects of ionizing radiation on a stack of graphene sheets separated by polymethyl methacrylate (PMMA) slabs. The exceptional absorption ability of such a heterostructure in the THz range makes it promising for use in a graphene-based THz bolometer to be deployed in space. A hydrogen/carbon ion beam was used to simulate the action of protons and secondary ions on the device.

View Article and Find Full Text PDF

The composite material filled with nano-sized BaTiO3 and Fe3O4 was designed and studied. The aluminium phosphate ceramics was used as a matrix. The XRD analysis demonstrates only the crystalline structure of the fillers used.

View Article and Find Full Text PDF

Polymer composites containing nanocarbon fillers are under intensive investigation worldwide due to their remarkable electromagnetic properties distinguished not only by components as such, but the distribution and interaction of the fillers inside the polymer matrix. The theory herein reveals that a particular effect connected with the homogeneity of a composite manifests itself in the terahertz range. Transmission time-domain terahertz spectroscopy was applied to the investigation of nanocomposites obtained by co-extrusion of PLA polymer with additions of graphene nanoplatelets and multi-walled carbon nanotubes.

View Article and Find Full Text PDF

Multifunctional 3D-printed holey structures made of composite polymers loaded with nanocarbon were designed to serve simultaneously as GHz-radiation absorbing layers and heat conductors. The geometry of the structures was devised to allow heat to be easily transferred through, with special attention paid to thermal conductivity. Numerical calculations and a simple homogenization theory were conducted in parallel to address this property.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono11ootf0iok147fj65pj9kb676s3tkb5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once