Publications by authors named "Polina Kudar"

Background/objectives: Humoral immunity directed against neuraminidase (NA) of the influenza virus may soften the severity of infection caused by new antigenic variants of the influenza viruses. Evaluation of NA-inhibiting (NI) antibodies in combination with antibodies to hemagglutinin (HA) may enhance research on the antibody response to influenza vaccines.

Methods: The study examined 64 pairs of serum samples from patients vaccinated with seasonal inactivated trivalent influenza vaccines (IIVs) in 2018 according to the formula recommended by the World Health Organization (WHO) for the 2018-2019 flu season.

View Article and Find Full Text PDF

Neuraminidase (NA)-based immunity could reduce the harmful impact of novel antigenic variants of influenza viruses. The detection of neuraminidase-inhibiting (NI) antibodies in parallel with anti-hemagglutinin (HA) antibodies may enhance research on the immunogenicity and duration of antibody responses to influenza vaccines. To assess anti-NA antibodies after vaccination with seasonal inactivated influenza vaccines, we used the enzyme-linked lectin assay, and anti-HA antibodies were detected in the hemagglutination inhibition assay.

View Article and Find Full Text PDF

In this retrospective cohort study, we investigated the formation of individual classes of antibodies to SARS-CoV-2 in archived serial sera from hospitalized patients with the medium-severe ( = 17) and severe COVID-19 ( = 11). The serum/plasma samples were studied for the presence of IgG, IgM and IgA antibodies to the recombinant S- and N-proteins of SARS-CoV-2. By the 7th day of hospitalization, an IgG increase was observed in patients both with a positive PCR test and without PCR confirmation of SARS-CoV-2 infection.

View Article and Find Full Text PDF

Influenza outbreaks caused by A/H7N9 viruses have occurred since 2013. After 2016, A/H7N9 influenza viruses underwent evolutionary changes. In this study, we examined the antigenic properties of influenza neuraminidase (NA) of A/H7N9 viruses as part of a live influenza vaccine (LAIV).

View Article and Find Full Text PDF

Influenza and infections are a significant cause of morbidity and mortality worldwide. Intranasal live influenza vaccine (LAIV) may prevent influenza-related bacterial complications. The objectives of the study are to estimate resistance against early influenza infection and post-influenza pneumococcal pneumonia after LAIV in mice.

View Article and Find Full Text PDF

Probiotic microorganisms are currently considered as a promising platform for the development of recombinant vaccines expressing foreign antigens. In this study, we generated and evaluated the live mucosal recombinant vaccine by integrating genes encoding influenza virus neuraminidase (NA) of the N2 subtype into the DNA of the probiotic strain L3 (L3). We confirmed NA expression in the pili of L3 using immune electron microscopy.

View Article and Find Full Text PDF