Introduction: T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive.
View Article and Find Full Text PDFPulmonary fibrosis, a debilitating lung disorder characterised by excessive fibrous tissue accumulation in lung parenchyma, compromises respiratory function leading to a life-threatening respiratory failure. While its origins are multifaceted and poorly understood, the urokinase system, including urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plays a significant role in regulating fibrotic response, extracellular matrix remodelling, and tissue repair. Mesenchymal stem/stromal cells (MSCs) hold promise in regenerative medicine for treating pulmonary fibrosis.
View Article and Find Full Text PDFIntroduction: Impaired function of brain morphogenic genes is considered one of the predisposing factors for the manifestation of psychiatric and cognitive disorders, such as paranoid schizophrenia (SCZ) and major depressive disorder (MDD). Identification of such genes (genes of neurotrophic factors and guidance molecules among them) and their deleterious genetic variants serves as a key to diagnosis, prevention, and possibly treatment of such disorders. In this study, we have examined the prevalence of genomic variants in brain morphogenic genes in individuals with SCZ and MDD within a Russian population.
View Article and Find Full Text PDFT-cadherin is a regulator of blood vessel remodeling and angiogenesis, involved in adiponectin-mediated protective effects in the cardiovascular system and in skeletal muscles. GWAS study has previously demonstrated a SNP in the gene to be associated with hypertension. However, the role of T-cadherin in regulating blood pressure has not been experimentally elucidated.
View Article and Find Full Text PDFPulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis.
View Article and Find Full Text PDFUrokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored receptor of urokinase (uPA), which is involved in brain development, nerve regeneration, wound healing and tissue remodeling. We have recently shown that , which encodes uPAR, is an early response gene in murine brain. Assumingly, diverse functions of might be attributed to hypothetical, unidentified microRNAs encoded within introns of the gene.
View Article and Find Full Text PDFuPAR is a membrane receptor that binds extracellular protease urokinase, contributes to matrix remodeling and plays a crucial role in cellular adhesion, proliferation, survival, and migration. uPAR overexpression in tumor cells promotes mitogenesis, opening a prospective avenue for targeted therapy. However, uPAR targeting in cancer has potential risks.
View Article and Find Full Text PDFTopical advances in studying molecular and cellular mechanisms responsible for regeneration in the peripheral nervous system have highlighted the ability of the nervous system to repair itself. Still, serious injuries represent a challenge for the morphological and functional regeneration of peripheral nerves, calling for new treatment strategies that maximize nerve regeneration and recovery. This review presents the canonical view of the basic mechanisms of nerve regeneration and novel data on the role of exosomes and their transferred microRNAs in intracellular communication, regulation of axonal growth, Schwann cell migration and proliferation, and stromal cell functioning.
View Article and Find Full Text PDFNeurotrophin receptors regulate neuronal survival and network formation, as well as synaptic plasticity in the brain via interaction with their ligands. Here, we examined early changes in the expression of neurotrophin receptor genes Ntk1 (TrkA), Ntrk2 (TrkB), Ntrk3 (TrkC), Ngfr (p75NTR) and miRNAs that target theses gens in the mouse brain after induction of seizure activity by pentylenetetrazol. We found that expression of Ntrk3 and Ngfr was upregulated in the cortex and the hippocampus 1-3 hours after the seizures, while Ntrk2 expression increased after 3-6 hours in the anterior cortex and after 1 and 6 hours in the hippocampus.
View Article and Find Full Text PDFGene therapy is one of the promising approaches for regenerative medicine. Local and long-term expression of essential growth factors allows to achieve the desired therapeutic effect. However, some aspects of prolonged usage of genetic constructs encoding growth factors, such as toxicity, mutagenicity, genotoxicity, and ability to disseminate from the injection site and mediate ectopic expression of therapeutic proteins, are poorly investigated.
View Article and Find Full Text PDFNeurotrophiс factors play a key role in the development, differentiation, and survival of neurons and nerve regeneration. In the present study, we evaluated the effect of certain neurotrophic factors (NGF, BDNF, and GDNF) on axon growth and migration of Nestin-green fluorescent protein (GFP)-positive cells using a 3D model of dorsal root ganglion (DRG) explant culture in Matrigel. Our method generally represents a convenient model for assessing the effects of soluble factors and therapeutic agents on axon growth and nerve regeneration in R&D studies.
View Article and Find Full Text PDFThe urokinase system is involved in a variety of physiological processes, such as fibrinolysis, matrix remodeling, wound healing, and regeneration. Upon binding to its cognate receptor urokinase-type plasminogen activator receptor (uPAR), urokinase-type plasminogen activator (uPA) catalyzes the conversion of plasminogen to plasmin and the activation of matrix metalloproteases. Apart from this, uPA-uPAR interaction can lead to the activation of transcription factors, mitogen-activated protein kinase signaling pathways and RTK cascades.
View Article and Find Full Text PDFTimely nerve restoration is an important factor for the successful regeneration of tissues and organs. It is known that axon regeneration following nerve injury is a multifactorial process that depends on the local expression of neurotrophins, including brain-derived neurotrophic factor (BDNF). Along with the survival of neurons, the active reorganization of the extracellular matrix is an important step for the growth of axons to their targets.
View Article and Find Full Text PDFPurpose: Recent findings indicate the significant contribution of urokinase and urokinase receptor (uPA and uPAR) in the processes of nerve regeneration, however, their role in axonal growth and branching is unclear. Using a 3D model of mouse Dorsal Root Ganglia (DRG) explants, differentiated into neurons Neuro 2a cells and transgenic mice lacking the urokinase gene, we studied the involvement of the uPA/uPAR system in the neural cell migration, neurite outgrowth, elongation and branching.
Results: uPA and uPAR are expressed in the growth cones of axons.