Loss of protein function is a driving force of ageing. We have identified peptidyl-prolyl isomerase A (PPIA or cyclophilin A) as a dominant chaperone in haematopoietic stem and progenitor cells. Depletion of PPIA accelerates stem cell ageing.
View Article and Find Full Text PDFProteasome inhibitors have become the standard of care for multiple myeloma (MM). Blocking protein degradation particularly perturbs the homeostasis of short-lived polypeptides such as transcription factors and epigenetic regulators. To determine how proteasome inhibitors directly impact gene regulation, we performed an integrative genomics study in MM cells.
View Article and Find Full Text PDFThe ubiquitin-proteasome pathway precisely controls the turnover of transcription factors in the nucleus, playing an important role in maintaining appropriate quantities of these regulatory proteins. The transcription factor c-MYC is essential for normal development and is a critical cancer driver. Despite being highly expressed in several tissues and malignancies, the c-MYC protein is also continuously targeted by the ubiquitin-proteasome pathway, which can either facilitate or inhibit c-MYC degradation.
View Article and Find Full Text PDFMultiple myeloma and its precursor plasma cell dyscrasias affect 3% of the elderly population in the US. Proteasome inhibitors are an essential part of several standard drug combinations used to treat this incurable cancer. These drugs interfere with the main pathway of protein degradation and lead to the accumulation of damaged proteins inside cells.
View Article and Find Full Text PDFTranscription is regulated through a dynamic interplay of DNA-associated proteins, and the composition of gene-regulatory complexes is subject to continuous adjustments. Protein alterations include post-translational modifications and elimination of individual polypeptides. Spatially and temporally controlled protein removal is, therefore, essential for gene regulation and accounts for the short half-life of many transcription factors.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. NAFLD usually begins as low-grade hepatic steatosis which further progresses in an age-dependent manner to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma in some patients. Ghrelin is a hormone known to promote adiposity in rodents and humans, but its potential role in hepatic steatosis is unknown.
View Article and Find Full Text PDFDespite intensive investigations, mechanisms of liver cancer are not known. Here, we identified an important step of liver cancer, which is the neutralization of tumor suppressor activities of an RNA binding protein, CUGBP1. The translational activity of CUGBP1 is activated by dephosphorylation at Ser302.
View Article and Find Full Text PDFThe histone acetyltransferase p300 has been implicated in the regulation of liver biology; however, molecular mechanisms of this regulation are not known. In this paper, we examined these mechanisms using transgenic mice expressing a dominant negative p300 molecule (dnp300). While dnp300 mice did not show abnormal growth within 1 year, these mice have many alterations in liver biology and liver functions.
View Article and Find Full Text PDFUnlabelled: Liver cancer is the fifth most common cancer. A highly invasive surgical resection of the liver tumor is the main approach used to eliminate the tumor. Mechanisms that terminate liver regeneration when the liver reaches the original size are not known.
View Article and Find Full Text PDFThe aged liver is more sensitive to the drug treatments and has a high probability of developing liver disorders such as fibrosis, cirrhosis, and cancer. Here we present mechanisms underlying age-associated severe liver injury and acceleration of liver proliferation after CCl4 treatments. We have examined liver response to CCl4 treatments using old WT mice and young C/EBPα-S193D knockin mice, which express an aged-like isoform of C/EBPα.
View Article and Find Full Text PDFActivation of xenobiotic metabolism pathways has been linked to lifespan extension in different models of aging. However, the mechanisms underlying activation of xenobiotic genes remain largely unknown. Here we showed that although farnesoid X receptor (FXR, Nr1h4) mRNA levels do not change significantly, FXR protein levels are elevated in the livers of the long-lived Little mice, leading to increased DNA binding activity of FXR.
View Article and Find Full Text PDFCancer changes biological processes in the liver by altering gene expression at the levels of transcription, translation, and protein modification. The RNA binding protein CUGBP1 is a key regulator of translation of CCAAT enhancer binding protein β and histone deacetylase 1 (HDAC1). These proteins form complexes that are involved in the regulation of liver biology.
View Article and Find Full Text PDFMolecular mechanisms underpinning nonalcoholic fatty liver disease (NAFLD) are not well understood. The earliest step of NAFLD is hepatic steatosis, which is one of the main characteristics of aging liver. Here, we present a molecular scenario of age-related liver steatosis.
View Article and Find Full Text PDFUnlabelled: One of the early events in the development of liver cancer is a neutralization of tumor suppressor proteins Rb, p53, hepatocyte nuclear factor 4α (HNF4α), and CCAAT/enhancer binding protein (C/EBP) α. The elimination of these proteins is mediated by a small subunit of proteasome, gankyrin, which is activated by cancer. The aim of this study was to determine the mechanisms that repress gankyrin in quiescent livers and mechanisms of activation of gankyrin in liver cancer.
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) is a complex neuromuscular disease characterized by skeletal muscle wasting, weakness, and myotonia. DM1 is caused by the accumulation of CUG repeats, which alter the biological activities of RNA-binding proteins, including CUG-binding protein 1 (CUGBP1). CUGBP1 is an important skeletal muscle translational regulator that is activated by cyclin D3-dependent kinase 4 (CDK4).
View Article and Find Full Text PDFExpansions of noncoding CUG and CCUG repeats in myotonic dystrophies type 1 (DM1) and DM2 cause complex molecular pathology, the features of which include accumulation of RNA aggregates and misregulation of the RNA-binding proteins muscleblind-like 1 (MBNL1) and CUG-binding protein 1 (CUGBP1). CCUG repeats also decrease amounts of the nucleic acid binding protein ZNF9. Using tetracycline (Tet)-regulated monoclonal cell models that express CUG and CCUG repeats, we found that low levels of long CUG and CCUG repeats result in nuclear and cytoplasmic RNA aggregation with a simultaneous increase of CUGBP1 and a reduction of ZNF9.
View Article and Find Full Text PDFAge declines liver functions, leading to the development of age-associated diseases. A member of the sirtuins family, SIRT1, is involved in the control of glucose homeostasis and fat metabolism. Because aging livers have alterations in glucose and fat metabolism, we examined a possible role of SIRT1 in these alterations.
View Article and Find Full Text PDFLiver cancer is the fifth most common cancer and the third most common cause of cancer related death in the world. The recent development of new techniques for the investigations of global change in the gene expression, signaling pathways and wide genome binding has provided novel information for the mechanisms underlying liver cancer progression. Although these studies identified gene expression signatures in hepatocellular carcinoma, the early steps of the development of hepatocellular carcinomas (HCC) are not well understood.
View Article and Find Full Text PDFCCAAT/Enhancer Binding Proteins family proteins are important regulators of liver functions. Here, we show the critical role of C/EBPα-mediated chromatin remodeling in the age-associated dysfunctions of the liver and in the maintenance of physiological homeostasis. Because ph-S193 isoform of C/EBPα is increased in livers of old mice, we have generated C/EBPα-S193D knockin mice, which mimic the ph-S193 isoform of C/EBPα.
View Article and Find Full Text PDFDespite significant advancements in our understanding of cancer development, the molecular mechanisms that underlie the formation of liver cancer remain largely unknown. C/EBPalpha is a transcription factor that regulates liver quiescence. Phosphorylation of C/EBPalpha at serine 193 (S193-ph) is upregulated in older mice and is thought to contribute to age-associated liver dysfunction.
View Article and Find Full Text PDFA truncated isoform of C/EBPbeta, C/EBPbeta-LIP, is required for liver proliferation. This isoform is expressed at high levels in proliferating liver and in liver tumors. However, high levels of C/EBPbeta-LIP are also observed in non-proliferating livers during acute phase response (APR).
View Article and Find Full Text PDFThe rapid detection of pathogenic bacteria in food and water is vital for the prevention of foodborne illness. In this study, the lux reporter genes were used in a new bioassay that allows pathogen monitoring without multiple sample manipulations or the addition of exogenous substrate. A recombinant phage specific for Escherichia coli 0157:H7 was constructed that, upon infection, catalyzes the synthesis of N-(3-oxohexanoyl)-L-homoserine lactone (OHHL).
View Article and Find Full Text PDFLiver tumor cells arise from normal hepatocytes that escape negative control of proliferation. The transcription factor C/EBPalpha maintains quiescence of hepatocytes through two pathways: inhibition of cdks and repression of E2F. Nevertheless, liver tumors and cultured hepatoma cell lines proliferate in the presence of C/EBPalpha.
View Article and Find Full Text PDFInduction of p21 in senescent human fibroblasts plays a key role in the inactivation of cyclin-dependent kinases and the resulting irreversible growth arrest in the early stages of cell senescence. We found that RNA-binding proteins are critical regulators of p21 during senescence. Two RNA-binding proteins, CUGBP1 and calreticulin (CRT), interact with the same nucleotide sequences within the 5' region of p21 mRNA, but have opposite effects on the translation of p21 mRNA.
View Article and Find Full Text PDFAccumulation of RNA CUG repeats in myotonic dystrophy type 1 (DM1) patients leads to the induction of a CUG-binding protein, CUGBP1, which increases translation of several proteins that are required for myogenesis. In this paper, we examine the role of overexpression of CUGBP1 in DM1 muscle pathology using transgenic mice that overexpress CUGBP1 in skeletal muscle. Our data demonstrate that the elevation of CUGBP1 in skeletal muscle causes overexpression of MEF2A and p21 to levels that are significantly higher than those in skeletal muscle of wild type animals.
View Article and Find Full Text PDF