The Arabian/Persian Gulf, a marginal sea of the northern Indian Ocean, has been significantly impacted by human activities, leading to a rise in harmful algal blooms (HABs). This study investigates the summer blooming of an ichthyotoxic phytoflagellate Chattonella marina var. antiqua and associated fish-kill in Kuwaiti waters, connecting the events to a previous dust storm and eutrophication status in the coastal waters of the Northern Arabian Gulf (NAG).
View Article and Find Full Text PDFBiodegradable electronic devices play a crucial role in addressing the escalating issue of electronic waste accumulation, which poses significant environmental threats. In this study, we explore the utilization of a methanol-based extract of the plant blended with a carboxymethyl cellulose biopolymer to produce a biodegradable and environmentally friendly functional material for a resistive switching memory system using silver and tungsten electrodes. Our analyses revealed that these two materials chemically interact to generate a perfect composite with near semiconducting optical bandgap (4.
View Article and Find Full Text PDFThe use of light as abundant, renewable, and clean energy source to boost lytic polysaccharide monooxygenase (LPMO) reactions represents an exciting and yet under-explored opportunity. Herein we demonstrated that photosensitizers, commonly used in photodynamic therapy, which act through the photocatalytic Type I mechanism can drive the oxidation of PASC by LPMOs, whereas Type II photosensitizers are not capable of promoting the LPMO activity. We analyzed Type I and Type II photosensitizers (methylene blue and tetraiodide salt of meso-tetrakis-(4-N-methylpyridyl) porphyrin, respectively) and demonstrated that, even without an addition of external reductant, Type I was capable of boosting Thermothelomyces thermophila MtLPMO9A activity in the presence of light.
View Article and Find Full Text PDFThe escalating prevalence of drug-resistant pathogens not only jeopardizes the effectiveness of existing treatments but also increases the complexity and severity of infectious diseases. Escherichia coli is one the most common pathogens across all healthcare-associated infections. Enzymatic treatment of bacterial biofilms, targeting extracellular polymeric substances (EPS), can be used for EPS degradation and consequent increase in susceptibility of pathogenic bacteria to antibiotics.
View Article and Find Full Text PDFCarboxylesterases comprise a major class of α/β-fold hydrolases responsible for the cleavage and formation of ester bonds. Found ubiquitously in nature, these enzymes are crucial for the metabolism of both endogenous and exogenous carboxyl esters in animals, plants and microorganisms. Beyond their essential physiological roles, carboxylesterases stand out as one of the important classes of biocatalysts for biotechnology.
View Article and Find Full Text PDFJ Photochem Photobiol B
August 2024
Pseudomonas aeruginosa, a gram-negative bacterium, accounts for 7% of all hospital-acquired infections. Despite advances in medicine and antibiotic therapy, P. aeruginosa infection still results in high mortality rates of up to 62% in certain patient groups.
View Article and Find Full Text PDFInt J Biol Macromol
August 2024
Glycoside hydrolase family 5 (GH5) encompasses enzymes with several different activities, including endo-1,4-β-mannosidases. These enzymes are involved in mannan degradation, and have a number of biotechnological applications, such as mannooligosaccharide prebiotics production, stain removal and dyes decolorization, to name a few. Despite the importance of GH5 enzymes, only a few members of subfamily 7 were structurally characterized.
View Article and Find Full Text PDFArabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
May 2024
Cariogenic biofilms have a matrix rich in exopolysaccharides (EPS), mutans and dextrans, that contribute to caries development. Although several physical and chemical treatments can be employed to remove oral biofilms, those are only partly efficient and use of biofilm-degrading enzymes represents an exciting opportunity to improve the performance of oral hygiene products. In the present study, a member of a glycosyl hydrolase family 66 from Flavobacterium johnsoniae (FjGH66) was heterologously expressed and biochemically characterized.
View Article and Find Full Text PDFCarbohydr Polym
August 2024
Production of value-added compounds and sustainable materials from agro-industrial residues is essential for better waste management and building of circular economy. This includes valorization of hemicellulosic fraction of plant biomass, the second most abundant biopolymer from plant cell walls, aiming to produce prebiotic oligosaccharides, widely explored in food and feed industries. In this work, we conducted biochemical and biophysical characterization of a prokaryotic two-domain R.
View Article and Find Full Text PDFThe fungus Thermothelomyces thermophilus is a thermotolerant microorganism that has been explored as a reservoir for enzymes (hydrolytic enzymes and oxidoreductases). The functional analysis of a recombinant cellobiose dehydrogenase (MtCDHB) from T. thermophilus demonstrated a thermophilic behavior, an optimal pH in alkaline conditions for inter-domain electron transfer, and catalytic activity on cellooligosaccharides with different degree of polymerization.
View Article and Find Full Text PDFCarbohydrate-active enzymes from the glycoside hydrolase family 9 (GH9) play a key role in processing lignocellulosic biomass. Although the structural features of some GH9 enzymes are known, the molecular mechanisms that drive their interactions with cellulosic substrates remain unclear. To investigate the molecular mechanisms that the two-domain Bacillus licheniformis BlCel9A enzyme utilizes to depolymerize cellulosic substrates, we used a combination of biochemical assays, X-ray crystallography, small-angle X-ray scattering, and molecular dynamics simulations.
View Article and Find Full Text PDFKuwaits intertidal and subtidal habitats were surveyed from 2013 to 2016 for amphipods, and earlier records from Kuwait and the rest of the Gulf were compared to provide the first annotated checklist of Amphipoda in Kuwait. A total of 82 sites in mainland and islands were surveyed including intertidal and subtidal zones. The resulting data identified 86 amphipod taxa belonging to 54 genera, 32 families and 3 suborders, including 20 new records to science that are currently being described.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
October 2023
Dental biofilms represent a serious oral health problem playing a key role in the development of caries and other oral diseases. In the present work, we cloned and expressed in E. coli two glucanases, Prevotella melaninogenica mutanase (PmGH87) and Capnocytophaga ochracea dextranase (CoGH66), and characterized them biochemically and biophysically.
View Article and Find Full Text PDFThis work reports biochemical characterization of Thermothelomyces thermophilus cellobiose dehydrogenase (TthCDHIIa) and its application as an antimicrobial and antibiofilm agent. We demonstrate that TthCDHIIa is thermostable in different ionic solutions and is capable of oxidizing multiple mono and oligosaccharide substrates and to continuously produce HO. Kinetics measurements depict the enzyme catalytic characteristics consistent with an Ascomycota class II CDH.
View Article and Find Full Text PDFCorn cobs (CCs) are abundant xylan-rich agricultural wastes. Here, we compared CCs XOS yields obtained via two different pretreatment routs, alkali and hydrothermal, using a set of recombinant endo- and exo-acting enzymes from GH10 and GH11 families, which have different restrictions for xylan substitutions. Furthermore, impacts of the pretreatments on chemical composition and physical structure of the CCs samples were evaluated.
View Article and Find Full Text PDFThe industrial uses of peptidases have already been consolidated; however, their range of applications is increasing. Thus, the biochemical characterization of new peptidases could increase the range of their biotechnological applications. In silico analysis identified a gene encoding a putative serine peptidase from Purpureocillium lilacinum (Pl_SerPep), annotated as a cuticle-degrading enzyme.
View Article and Find Full Text PDFXylan is a major constituent of plant cell walls and is a potential source of biomaterials, and the derived oligosaccharides have been shown to have prebiotic effects. Xylans can be highly substituted with different sugar moieties, which pose steric hindrance to the xylanases that catalyse the hydrolysis of the xylan backbone. One such substituent is α-D-glucuronic acid, which is linked to the O2' position of the β-1,4 D-xylopyranoses composing the main chain of xylans.
View Article and Find Full Text PDFLytic Polysaccharide MonoOxygenases display great variability towards cellulose ultrastructure while performing oxidative functionalization of the polymers. Aiming at employing AA9-LPMOs for isolation of cellulose nano-crystals (CNCs), the ratio between functionalization/crystalline degradation became a crucial parameter. Here are reported the constraints posed by the substrate ultrastructure on the activity of seven different AA9 LPMOs representative of various regioselectivity and substrate affinity: TtAA9E, TaAA9A, PcAA9D, MtAA9A, MtAA9D, MtAA9I-CBM and MtAA9J.
View Article and Find Full Text PDFSAXSMoW (SAXS Molecular Weight) is an online platform widely used over the past few years for determination of molecular weights of proteins in dilute solutions. The scattering intensity retrieved from small-angle X-ray scattering (SAXS) raw data is the sole input to SAXSMoW for determination of molecular weights of proteins in liquid. The current updated SAXSMoW version 3.
View Article and Find Full Text PDFBioconversion of lignocellulosic biomass into value-added products relies on polysaccharides depolymerization by carbohydrate active enzymes. This work reports biochemical characterization of Paludibacter propionicigenes xylanase from GH10 (PpXyn10A) and its application for enzymatic xylooligosaccharides (XOS) production from commercial heteroxylans and liquor of hydrothermally pretreated corn cobs (PCC). PpXyn10A is tolerant to ethanol and NaCl, and releases xylobiose (X2) and xylotriose (X3) as the main hydrolytic products.
View Article and Find Full Text PDFThe majority of lignocellulosic biomass on the planet originates from plant cell walls, which are complex structures build up mainly by cellulose, hemicellulose and lignin. The largest part of hemicellulose, xylan, is a polymer with a β-(1→4)-linked xylose residues backbone decorated with α-D-glucopyranosyl uronic acids and/or L-arabinofuranose residues. Xylan is the second most abundant biopolymer in nature, which can be sustainably and efficiently degraded into decorated and undecorated xylooligosaccharides (XOS) using combinations of thermochemical pretreatments and enzymatic hydrolyses, that have broad applications in the food, feed, pharmaceutical and cosmetic industries.
View Article and Find Full Text PDFBacterial glycoside hydrolase 1 (GH1) enzymes with 6-phospho-β-galactosidase and 6-phospho-β-glucosidase activities have the important task of releasing phosphorylated and nonphosphorylated monosaccharides into the cytoplasm. Curiously, dual 6-phospho-β-galactosidase/6-phospho-β-glucosidase (dual-phospho) enzymes have broad specificity and are able to hydrolyze galacto- and gluco-derived substrates. This study investigates the structure and substrate specificity of a GH family 1 enzyme from , hereafter known as BglC.
View Article and Find Full Text PDFTo examine whether a country-wide COVID-19 lockdown affected phytoplankton development, variability of chlorophyll-a concentrations in the north-western Arabian/Persian Gulf (Kuwait Bay) was investigated using remote sensing instruments Sentinel OLCI between 2018 and 2020 and compared to available in situ collected data. Satellite-retrieved chlorophyll concentrations considerably increased in inshore waters of Kuwait Bay, 1-2 months following the initiation of the 24/7 curfew. The extremely high concentrations of dissolved inorganic nutrients, especially ammonia, and coincided phytoplankton bloom were revealed in June-July 2020 by opportunity field sampling, supporting the satellite-derived bloom detection.
View Article and Find Full Text PDFThe heteropolysaccharide xylan is a valuable source of sustainable chemicals and materials from renewable biomass sources. A complete hydrolysis of this major hemicellulose component requires a diverse set of enzymes including endo-β-1,4-xylanases, β-xylosidases, acetylxylan esterases, α-l-arabinofuranosidases, and α-glucuronidases. Notably, the most studied xylanases from glycoside hydrolase family 11 (GH11) have exclusively been endo-β-1,4- and β-1,3-xylanases.
View Article and Find Full Text PDF