Publications by authors named "Poliana C M Martins"

The bioactive peptide bradykinin obtained from cleavage of precursor kininogens activates the kinin-B2 receptor functioning in induction of inflammation and vasodilatation. In addition, bradykinin participates in kidney and cardiovascular development and neuronal and muscle differentiation. Here we show that kinin-B2 receptors are expressed throughout differentiation of murine C2C12 myoblasts into myotubes.

View Article and Find Full Text PDF

Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant-T2-measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice.

View Article and Find Full Text PDF

Although muscular dystrophies are among the most common human genetic disorders, there are few treatment options available. Animal models have become increasingly important for testing new therapies prior to entering human clinical trials. The Dmd(mdx) mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD), presenting the same molecular and protein defect as seen in humans with the disease.

View Article and Find Full Text PDF

The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory.

View Article and Find Full Text PDF