Publications by authors named "Polettini A"

Four different end-of-life options for disposable bioplastic cups were investigated and compared based on their environmental implications. Two products with distinct polymeric composition were tested simulating the following scenarios at laboratory scale: i) industrial composting (180 days at 58 °C); ii) anaerobic digestion followed by industrial composting (45 days at 55 °C and 180 days at 58 °C); iii) anaerobic digestion followed by direct digestate use on soil for agricultural purposes (45 days at 55 °C and 180 days at 25 °C); iv) uncontrolled release into a soil environment (180 days at 25 °C). Ecotoxicity tests were run at the end of each experiment to investigate the effects of the materials on three main groups of terrestrial model organisms: plants, earthworms and nitrifying bacteria.

View Article and Find Full Text PDF

Although the use, structural variety, and prevalence of synthetic cannabinoids (SCs) have steadily increased on the drug market, they are rarely analyzed in abstinence control programs for driver's license regranting. The aim of this study was to determine the SC prevalence in these programs by analyzing hair samples collected between March 2020 and March 2021 from various regions in Germany, mainly Bavaria (40%). Specimens were analyzed quantitatively for drugs of abuse and qualitatively for 107 SCs.

View Article and Find Full Text PDF

Bioplastics have entered everyday life as a potential sustainable substitute for commodity plastics. However, still further progress should be made to clarify their degradation behavior under controlled and uncontrolled conditions. The wide array of biopolymers and commercial blends available make predicting the biodegradation degree and kinetics quite a complex issue that requires specific knowledge of the multiple factors affecting the degradation process.

View Article and Find Full Text PDF

In the present study commercial Polylactic Acid-based disposable cups and plates were selected for lab scale anaerobic degradability tests. The experiments were carried out under thermophilic conditions at different inoculum to substrate ratios and test material sizes, and the specific biogas production and associated kinetics were evaluated. Maximum biogas production was comparable for almost all the experimental runs (1620 and 1830 NmL/gTOC) and a biodegradation degree in the range 86-100% was attained.

View Article and Find Full Text PDF

Despite having been widely investigated, dark fermentative H production from organic residues is still limited by process-related issues which may hamper the perspectives of full-scale process implementation. Such constraints are mainly due to the process complexity, which is largely affected by multiple and often mutually interacting factors. In the present work, the results of continuous fermentative H production experiments using synthetic cheese whey as the input substrate were used to gain detailed knowledge of the process features and identify suitable and critical operating conditions.

View Article and Find Full Text PDF

Volatile fatty acids (VFAs) are high-value chemicals that are increasingly demanded worldwide. Biological production via food waste (FW) dark fermentation (DF) is a promising option to achieve the sustainability and environmental benefits typical of biobased chemicals and concurrently manage large amounts of residues. DF has a great potential to play a central role in waste biorefineries due to its ability to hydrolyze and convert complex organic substrates into VFAs that can be used as building blocks for bioproducts, chemicals and fuels.

View Article and Find Full Text PDF

Background And Aims: Retrospective analysis of hair testing data provides insights in drugs abuse patterns and improves results interpretation. Cases from subjects undergoing driving fitness assessment (2010-2020) were examined to evidence patterns in methamphetamine (MA) abuse.

Materials And Methods: All cases with positive MA (≥0.

View Article and Find Full Text PDF

Cheese whey (CW) is the main by-product of the dairy industry and is often considered one of the main agro-industrial biowaste streams to handle, especially within the European Union, where the diary activities play an essential role in the agrarian economy. In the paper, Life Cycle Assessment (LCA) is used to analyse the feasibility of producing polyhydroxyalkanoates (PHA) as the main output of an innovative CW valorisation route which is benchmarked against a conventional anaerobic digestion (AD) process. To this aim, the LCA inventory data are derived from lab-scale PHA accumulation tests performed on real CW, while data from the literature of concern are used for modelling both the PHA extraction from the accumulating biomass and for the alternative CW valorisation through AD.

View Article and Find Full Text PDF

The Circular and Green Economy principles is inspiring new approaches to municipal wastewater treatment plants (MWWTPs) design and operation. Recently, an ever-growing interest is devoted to exploring the alternatives for switching the WWTPs from being able to 'simply' removing contaminants from water to biorefinery-like plants where energy and material can be recovered. In this perspective, both wastewater and residues from process can be valorised for recovering nutrients (N and P), producing value added products (i.

View Article and Find Full Text PDF

Anaerobic digestion (AD) of organic waste, although widely practiced, may require suitable accompanying treatments to enhance the degradability of complex materials. Since these may require significant efforts in terms of energy and chemical demand, careful assessment of their overall environmental sustainability is mandatory to evaluate their full-scale feasibility. The study aims to represent the environmental profile of ultrasonication (US) applied as a post-treatment of anaerobic digestion of agro-industrial organic residues.

View Article and Find Full Text PDF

The application of Quantitative Structure-Property Relationship (QSPR) modeling to the prediction of reversed-phase liquid chromatography retention behavior of synthetic cannabinoids (SC), and its use in aiding the untargeted identification of unknown SC are described in this paper. 1D, 2D molecular descriptors and fingerprints of 105 SC were calculated with PaDEL-Descriptor, selected with Boruta algorithm in R environment, and used to build-up a multiple linear regression model able to predict retention times, relative to JWH-018 N-pentanoic acid-d5 as internal standard, under the following conditions: Agilent ZORBAX Eclipse Plus C18 (100 mm × 2.1 mm I.

View Article and Find Full Text PDF

Despite liquid chromatography-high-resolution tandem mass spectrometry (MS2) enables untargeted acquisition, data processing in toxicological screenings is almost invariably performed in targeted mode. We developed a computational approach based on open source chemometrics software that, starting from a suspected synthetic cannabinoid (SC) determined formula, searches for isomers in different new psychoactive substances web databases, predicts retention time (RT) and high-resolution MS2 spectrum, and compares them with the unknown providing a rank-ordered candidates list. R was applied on 105 SC measured data to develop and validate a multiple linear regression quantitative structure-activity relationship model predicting RT.

View Article and Find Full Text PDF

With an estimated worldwide production of 190 billion kg per year, and due to its high organic load, cheese whey represents a huge opportunity for bioenergy and biochemicals production. Several physical, chemical and biological processes have been proposed to valorise cheese whey by producing biofuels (methane, hydrogen, and ethanol), electric energy, and/or chemical commodities (carboxylic acids, proteins, and biopolymers). A biorefinery concept, in which several value-added products are obtained from cheese whey through a cascade of biotechnological processes, is an opportunity for increasing the product spectrum of dairy industries while allowing for sustainable management of the residual streams and reducing disposal costs for the final residues.

View Article and Find Full Text PDF

The concept of biorefinery expands the possibilities to extract value from organic matter in form of either bespoke crops or organic waste. The viability of biorefinery schemes depends on the recovery of higher-value chemicals with potential for a wide distribution and an untapped marketability. The feasibility of biorefining organic waste is enhanced by the fact that the biorefinery will typically receive a waste management fee for accepting organic waste.

View Article and Find Full Text PDF

This paper evaluates the effects of ultrasonication (US) applied, individually or in combination with a mechanical treatment, to the effluent of anaerobic digestion (AD) of lignocellulosic waste, on methane (CH) production. US of the substrate downstream of AD is a relatively novel concept aimed at improving the degradation of recalcitrant components in order to enhance the overall energy efficiency of the process. US tests were carried out on real digestate samples at different energies (500-50,000 kJ/kg total solids (TS), corresponding to sonication densities of 0.

View Article and Find Full Text PDF

Batch dark fermentation tests were performed on sheep cheese whey without inoculum addition at different operating pHs, relating the type and production yields of the observed gaseous and liquid by-products to the evolution of fermentation. Cheese whey fermentation evolved over time in two steps, involving an initial conversion of carbohydrates to lactic acid, followed by the degradation of this to soluble and gaseous products including short-chain fatty acids (mainly acetic, butyric and propionic acids) and hydrogen. The operating pH affected the production kinetics and yields, as well as the fermentation pathways.

View Article and Find Full Text PDF

Three different experimental sets of runs involving batch fermentation assays were performed to evaluate the influence of the experimental conditions on biological hydrogen production from the source-separated organic fraction of municipal solid waste collected through a door-to-door system. The fermentation process was operated with and without automatic pH control, at a pH of 5.5 and 6.

View Article and Find Full Text PDF

Factorial fermentation experiments on food waste (FW) inoculated with activated sludge (AS) were conducted to investigate the effects of pH and the inoculum-to-substrate ratio (ISR [g VS/g TOC]) on biohydrogen production. The two parameters affected the H yield, the fermentation rate and the biochemical pathways. The minimum and maximum yields were 41 L H/kg TOC (pH = 7.

View Article and Find Full Text PDF

Aims: The aim of this study was to examine urine creatinine concentrations in drivers submitted to controlled alcohol abstinence programs.

Methods: Urine samples (n = 32,210) were screened for ethyl glucuronide (EtG) by immunoassay during a 2-year period. Non-negatives underwent EtG and ethyl sulfate (EtS) confirmation by coupled-column Liquid Chromatography-Tandem Mass Spectrometry.

View Article and Find Full Text PDF

The great concern regarding food loss (FL) has been studied previously, but in an isolated way, disregarding interdependencies with other areas. This paper aims to go a step further by proposing a new procedure to assess different waste management alternatives based on the nexus approach by means of an integrated Water-Energy-Food-Climate Nexus Index (WEFCNI). The environmental profile of the waste management techniques is determined using Life Cycle Assessment (LCA) which, in combination with Linear Programming (LP), explores the optimal aggregation of weighting factors that lead to an aggregated nexus index.

View Article and Find Full Text PDF

Batch factorial experiments were performed on cheese whey+wastewater sludge mixtures to evaluate the influence of pH and the inoculum-to-substrate ratio (ISR) on fermentative H production and build a related predictive model. ISR and pH affected H potential and rate, and the fermentation pathways. The specific H yield varied from 61 (ISR=0, pH=7.

View Article and Find Full Text PDF

One- and two-stage anaerobic digestion of food waste aimed at recovering methane (CH) and hydrogen and methane (H+CH), respectively, were compared in order to assess the potential benefits from the two-stage process in terms of overall energy recovery. Results suggest that a two-stage process where the first reactor is properly operated in order to achieve a significant net hydrogen production, may display a 20% comparatively higher energy recovery yield as a result, mainly, of enhanced methane production as well as of the associated hydrogen production. The highest methane production of the two-stage process was due to improved hydrolysis and fermentation of food waste, with increased amounts of volatile fatty acids being readily available to methanogenesis.

View Article and Find Full Text PDF

The present study evaluates the influence of alkaline (NaOH) pretreatment on anaerobic digestion of olive pomace. Batch hydrolysis experiments with different NaOH dosages, process durations and temperatures were conducted, in which the variation of olive pomace solubilization in the liquid phase was investigated. The effect of pretreatment on anaerobic digestion was studied through biochemical methane potential assays.

View Article and Find Full Text PDF

A factorial study was conducted on basic oxygen furnace slag from a steelmaking industry with the aim of systematically identifying the individual and joint effects of the operating parameters (total pressure, CO2 concentration in the gas phase and temperature) on the CO2 sequestration yield of a direct aqueous carbonation process. Each operating parameter was varied over a range of three levels according to a 3(3) factorial design, resulting in 27 carbonation experiments. The carbonation performance and the changes in particle size and mineralogical characteristics of the slag were investigated in detail.

View Article and Find Full Text PDF