Fruit quality traits are major breeding targets in cultivated strawberry (). Taking into account the requirements of both growers and consumers when selecting high-quality cultivars is a real challenge. Here, we used a diversity panel enriched with unique European accessions and the 50 K FanaSNP array to highlight the evolution of strawberry diversity over the past 160 years, investigate the molecular basis of 12 major fruit quality traits by genome-wide association studies (GWAS), and provide genetic markers for breeding.
View Article and Find Full Text PDFFlowering time (FT), which determines when fruits or seeds can be harvested, is subject to phenotypic plasticity, that is, the ability of a genotype to display different phenotypes in response to environmental variation. Here, we investigated how the environment affects the genetic architecture of FT in cultivated strawberry (Fragaria × ananassa) and modifies its quantitative trait locus (QTL) effects. To this end, we used a bi-parental segregating population grown for 2 years at widely divergent latitudes (five European countries) and combined climatic variables with genomic data (Affymetrix SNP array).
View Article and Find Full Text PDFCultivated strawberry, × , has a complex aroma due to the presence of more than 350 volatile organic compounds (VOCs). However, a mixture of only 19 compounds, called Key Volatile Compounds (KVC), can impart the main strawberry aroma. The octoploid nature of the cultivated strawberry species (2 = 8 = 56) adds complexity to the heritance of the accumulation of the volatiles responsible for aroma.
View Article and Find Full Text PDFThe cultivated strawberry (Fragaria x ananassa) is an octoploid species (2n = 8x = 56), appreciated widely for its fruit. There have been very few studies on fruit quality traits, which are known to be mostly polygenic and environmentally dependent. To identify higher genetic variability, two non-related populations were genotyped: an F1 population cross between 'FC50' and 'FD54' and an F2 population cross between 'Camarosa' and 'Dover', hybridizing both with IStraw35k and IStraw90k SNP arrays, respectively.
View Article and Find Full Text PDF