The antidiabetic drug gliclazide (GLZ) has a slow absorption rate and a low bioavailability due to its poor solubility. GLZ is often prescribed along with an antihypertensive, as many diabetic patients have coexistent hypertension. Cocrystallization and coamorphization are attractive strategies to enhance dissolution rates and to reduce the number of medications a patient has to take.
View Article and Find Full Text PDFThe amorphization of 18 different drugs on milling with one mole equivalent sodium taurocholate (NaTC) was investigated. In all cases the X-ray powder pattern showed an amorphous halo after milling at room temperature or after cryomilling and 14 of the 18 coamorphous drug-NaTC systems were physically stable for between one to eleven months under ambient storage conditions. In three cases, namely carbamazepine-NaTC, indomethacin-NaTC and mefenamic acid-NaTC, significant dissolution advantages over the crystalline drugs were observed, both for the freshly prepared samples and after storage for seven months.
View Article and Find Full Text PDFThe effects of ball-milling and cryomilling on sulfamerazine forms I and II (SMZ FI, FII) were investigated using X-ray powder diffraction, infrared and near-infrared (NIR) spectroscopy. Cryomilling resulted in a complete amorphization of both polymorphs. Milling at room temperature gave mixtures of amorphous SMZ (FA) and FII.
View Article and Find Full Text PDFThe formation and physical stability of amorphous sulfathiazole obtained from polymorphic forms I and III by cryomilling was investigated by X-ray powder diffraction (XRPD) and near-infrared (NIR) spectroscopy. Principal component analysis was applied to the NIR data to monitor the generation of crystalline disorder with milling time and to study subsequent recrystallization under different storage conditions. Complete conversion into the amorphous phase was observed for both forms after 45 (form I) and 150 min (form III) milling time.
View Article and Find Full Text PDF