The auxetic materials have exotic mechanical properties compared to conventional materials, such as higher indentation resistance, more superior sound absorption performance. Although the auxetic behavior has also been observed in two-dimensional (2D) nanomaterials, to date there has not been much research on auxetic materials in the vertical asymmetric Janus 2D layered structures. In this paper, we explore the mechanical, electronic, and transport characteristics of Janus SiOX (X = S, Se, Te) monolayers by first-principle calculations.
View Article and Find Full Text PDFAlthough O is an element of chalcogen group, the study of two-dimensional (2D) O-based Janus dichalcogenides/monochalcogenides, especially their 1T-phase, has not been given sufficient attention. In this work, we systematically investigate the structural, electronic, and optical properties of 1T Janus GeSO monolayer by using the density functional theory. the analysis of phonon spectrum and evaluation of elastic constants, the GeSO monolayer is confirmed to be dynamically and mechanically stable.
View Article and Find Full Text PDFInspired by the successfully experimental synthesis of Janus structures recently, we systematically study the electronic, optical, and electronic transport properties of Janus monolayers In(/= S, Se, Te with≠) in the presence of a biaxial strain and electric field using density functional theory. Monolayers Inare dynamically and thermally stable at room temperature. At equilibrium, both InSTe and InSeTe are direct semiconductors while InSSe exhibits an indirect semiconducting behavior.
View Article and Find Full Text PDFSurface functionalization is one of the useful techniques for modulating the mechanical and electronic properties of two-dimensional systems. In the present study, we investigate the structural, elastic, and electronic properties of hexagonal boron phosphide monolayer functionalized by Br and Cl atoms using first-principles predictions. Once surface-functionalized with Br/Cl atoms, the planar structure of BP monolayer is transformed to the low-buckled lattice with the bucking constant of about 0.
View Article and Find Full Text PDFMolecular dynamics simulations show that a graphene nanoribbon with alternating regions which are one and three hexagons wide can transform into a hybrid 1D nanoobject with alternating double chains and polycyclic regions under electron irradiation in HRTEM. A scheme of synthesis of such a nanoribbon using Ullmann coupling and dehydrogenation reactions is proposed. The reactive REBO-1990EVC potential is adapted for simulations of carbon-hydrogen systems and is used in combination with the CompuTEM algorithm for modeling of electron irradiation effects.
View Article and Find Full Text PDFThe ground state of the molecule consisting of 10 carbon atoms in C10(rg) "ring" conformation and the energy of its metastable C10(st) "star" conformation are reported. The reaction coordinate for the isomeric transition C10(st) → C10(rg) was calculated using density functional theory (DFT) with UB3LYP/6-31G(d,p). It was established that a 5-fold symmetry axis is conserved in this isomeric transition.
View Article and Find Full Text PDFStructural, energetic, and tribological characteristics of double-layer graphene with commensurate and incommensurate krypton spacers of nearly monolayer coverage are studied within the van der Waals-corrected density functional theory. It is shown that when the spacer is in the commensurate phase, the graphene layers have the AA stacking. For this phase, the barriers to relative in-plane translational and rotational motion and the shear mode frequency of the graphene layers are calculated.
View Article and Find Full Text PDFThe changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8) nanotube are found at the Peierls transition.
View Article and Find Full Text PDF