X-ray absorption and Auger electron spectroscopies are demonstrated to be powerful tools to unravel the electronic structure of solvated ions. In this work for the first time, we use a combination of these methods in the tender X-ray regime. This allowed us to address electronic transitions from deep core levels, to probe environmental effects, specifically in the bulk of the solution since the created energetic Auger electrons possess large mean free paths, and moreover, to obtain dynamical information about the ultrafast delocalization of the core-excited electron.
View Article and Find Full Text PDFX-ray photoelectron and KLL Auger spectra were measured for the K^{+} and Cl^{-} ions in aqueous KCl solution. While the XPS spectra of these ions have similar structures, both exhibiting only weak satellites near the main line, the Auger spectra differ dramatically. Contrary to the chloride case, a very strong extra peak was found in the Auger spectrum of K^{+} at the low kinetic energy side of the ^{1}D state.
View Article and Find Full Text PDFA core-ionized H(2)O molecule in liquid water primarily relaxes through normal Auger decay, leading to a two-hole final state in which both valence holes are localized on the same water molecule. Electronic coupling to the environment, however, allows for alternative decays resembling Intermolecular Coulombic Decay (ICD), producing final states with one of the holes delocalized on a neighboring water molecule. Here we present an experimental study of such minority processes, which adds to our understanding of dynamic interactions of electronically excited H(2)O molecules with their local surrounding in liquid water and aqueous solution.
View Article and Find Full Text PDFAuger electron spectroscopy combined with theoretical calculations has been applied to investigate the decay of the Ca 2p core hole of aqueous Ca(2+). Beyond the localized two-hole final states on the calcium ion, originating from a normal Auger process, we have further identified the final states delocalized between the calcium ion and its water surroundings and produced by core level intermolecular Coulombic decay (ICD) processes. By applying the core-hole clock method, the time scale of the core level ICD was determined to be 33 ± 1 fs for the 2p core hole of the aqueous Ca(2+).
View Article and Find Full Text PDFWe study how the ultrafast intermolecular hopping of electrons excited from the water O1s core level into unoccupied orbitals depends on the local molecular environment in liquid water. Our probe is the resonant Auger decay of the water O1s core hole (lifetime ∼3.6 fs), by which we show that the electron-hopping rate can be significantly reduced when a first-shell water molecule is replaced by an atomic ion.
View Article and Find Full Text PDFWe report highly surface sensitive core-level photoelectron spectra of small carboxylic acids (formic, acetic and butyric acid) and their respective carboxylate conjugate base forms (formate, acetate and butyrate) in aqueous solution. The relative surface propensity of the carboxylic acids and carboxylates is obtained by monitoring their respective C1s signal intensities from a solution in which their bulk concentrations are equal. All the acids are found to be enriched at the surface relative to the corresponding carboxylates.
View Article and Find Full Text PDFThe local electronic structure of glycine in neutral, basic, and acidic aqueous solution is studied experimentally by X-ray photoelectron spectroscopy and theoretically by molecular dynamics simulations accompanied by first-principle electronic structure and spectrum calculations. Measured and computed nitrogen and carbon 1s binding energies are assigned to different local atomic environments, which are shown to be sensitive to the protonation/deprotonation of the amino and carboxyl functional groups at different pH values. We report the first accurate computation of core-level chemical shifts of an aqueous solute in various protonation states and explicitly show how the distributions of photoelectron binding energies (core-level peak widths) are related to the details of the hydrogen bond configurations, i.
View Article and Find Full Text PDFThe 2s and 2p photoelectron spectra have been measured for Na(+), Mg(2+), and Al(3+) ions in aqueous solution. In all cases, the 2s lines are significantly broader than the 2p features, which is attributed to a shorter lifetime of the respective 2s hole. Since intraionic Coster-Kronig decay channels from the (2s)(-1) state are closed for free Na(+), Mg(2+), and Al(3+) ions, this is evidence for an intermolecular Coster-Kronig-like process, reminiscent of intermolecular Coulombic decay (ICD), involving neighboring water solvent molecules.
View Article and Find Full Text PDFWe investigate various mechanisms contributing to the surface ion distributions in simple and mixed aqueous alkali-halide solutions depending on the total salt concentration, using a combination of photoelectron spectroscopy and molecular dynamics simulations. In simple solutions, the surface enhancement of large polarizable anions is reduced with increasing concentration. In the case of a NaBr/NaCl mixed aqueous solution, with bromide as the minority component, the situation is more complex.
View Article and Find Full Text PDFNitrogen and oxygen K emission spectra of glycine in the form of anions, zwitterions, and cations in aqueous solution are presented. It is shown that protonation has a dramatic influence on the local electronic structure and that the functional groups give a distinct spectral fingerprint.
View Article and Find Full Text PDFCore-level photoelectron spectroscopy measurements have been performed of aqueous solutions of NaCl codissolved with NaClO(n) (n=1-4). Each species has a distinct Cl 2p electron binding energy, which can be exploited for depth-profiling experiments to study the competition between Cl(-) and ClO(n)(-) anions for residing in the outermost layers of the solution/vapor interface. Strongest propensity for the surface is observed for n=4 (perchlorate), followed by n=3 (chlorate), n=2 (chlorite), n=0 (chloride), and n=1 (hypochlorite).
View Article and Find Full Text PDFAqueous potassium chloride has been studied by synchrotron-radiation excited core-level photoelectron and Auger electron spectroscopy. In the Auger spectrum of the potassium ion, the main feature comprises the final states where two outer valence holes are localized on potassium. This spectrum exhibits also another feature at a higher kinetic energy which is related to final states where outer valence holes reside on different subunits.
View Article and Find Full Text PDFWe have combined near edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS) to study the electronic rearrangement associated with the hydrolyzation of formaldehyde to methanediol in aqueous solution. The spectra are contrasted against those of aqueous formamide and urea, which are structurally similar but do not undergo hydrolysis in solution. We have recently demonstrated that the hydrolyzation of formaldehyde is manifested in the oxygen 1s NEXAFS spectrum by the disappearance of the oxygen 1s --> pi* absorption line.
View Article and Find Full Text PDFValence and core level photoelectron spectra and Auger electron spectra of ammonia in pure clusters have been measured. The Auger electron spectra of gas-phase ammonia, pure ammonia clusters and ammonia in aqueous solution are compared and interpreted via ab initio calculations of the Auger spectrum of the ammonia monomer and dimer. The calculations reveal that the final two-hole valence states can be delocalized over both ammonia molecules.
View Article and Find Full Text PDFThe local electronic structure of Fe(III) and Fe(II) ions in different alcohol solutions (methanol, ethanol, propan-1-ol) is investigated by means of soft X-ray absorption spectroscopy at the iron L 2,3-edge. The experimental spectra are compared with ligand field multiplet simulations. The solvated Fe(III) complex is found to exhibit octahedral symmetry, while a tetragonal symmetry is observed for Fe(II).
View Article and Find Full Text PDFThe formation process of binary clusters has been studied using synchrotron based core level photoelectron spectroscopy. Free neutral krypton clusters have been produced by adiabatic expansion and doped with chloromethane molecules using the pickup technique. The comparison between the integrated intensities, linewidths, and level shifts of the cluster features of pure krypton and of chloromethane-krypton clusters has been used to obtain information about the cluster geometry.
View Article and Find Full Text PDFClusters formed by a coexpansion process of argon and neon have been studied using synchrotron radiation. Electrons from interatomic Coulombic decay as well as ultraviolet and x-ray photoelectron spectroscopy were used to determine the heterogeneous nature of the clusters and the cluster structure. Binary clusters of argon and neon produced by coexpansion are shown to exhibit a core-shell structure placing argon in the core and neon in the outer shells.
View Article and Find Full Text PDF