Unlabelled: Terahertz (THz) tomographic imaging has recently attracted significant attention thanks to its non-invasive, non-destructive, non-ionizing, material-classification, and ultra-fast nature for object exploration and inspection. However, its strong water absorption nature and low noise tolerance lead to undesired blurs and distortions of reconstructed THz images. The diffraction-limited THz signals highly constrain the performances of existing restoration methods.
View Article and Find Full Text PDFTerahertz computed tomography (THz CT) has drawn significant attention because of its unique capability to bring multi-dimensional object information from invisible to visible. However, current physics-model-based THz CT modalities present low data use efficiency on time-resolved THz signals and low model fusion extensibility, limiting their application fields' practical use. In this paper, we propose a supervised THz deep learning computed tomography (THz DL-CT) framework based on time-domain information.
View Article and Find Full Text PDFIn this study, we accentuate the facile and green synthesis of ecologically viable silver nanoparticles (AgNPs) using aqueous (A-BGE) and ethanolic (E-BGE) dried bitter gourd (Momordica charantia) fruit extract as reducing and capping agents. Although AgNPs synthesized using BGEs have been reported earlier in fundamental antimicrobial studies, the possible antioxidant activity, antibacterial efficacy against superbugs, and a potential antimicrobial mechanism are still lacking. The characterization of as-prepared AgNPs was studied through UV-vis, TEM, Zeta-potential, FT-IR, XRD, and XPS analysis.
View Article and Find Full Text PDF