IEEE Trans Cybern
September 2017
In a recent work, the effectiveness of neighborhood supported model level fuzzy aggregation was shown under dynamic background conditions. The multi-feature fuzzy aggregation used in that approach uses real fuzzy similarity values, and is robust for low and medium-scale dynamic background conditions such as swaying vegetation, sprinkling water, etc. The technique, however, exhibited some limitations under heavily dynamic background conditions, as features have high uncertainty under such noisy conditions and these uncertainties were not captured by real fuzzy similarity values.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2015
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning-based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, and so on, in the limited amount of training data.
View Article and Find Full Text PDFIEEE Trans Image Process
February 2014
We propose a new algorithm for moving object detection in the presence of challenging dynamic background conditions. We use a set of fuzzy aggregated multifeature similarity measures applied on multiple models corresponding to multimodal backgrounds. The algorithm is enriched with a neighborhood-supported model initialization strategy for faster convergence.
View Article and Find Full Text PDFIn this paper, we examine the suitability of correlogram for background subtraction, as a step towards moving object detection. Correlogram captures inter-pixel relationships in a region and is seen to be effective for modeling the dynamic backgrounds. A multi-channel correlogram is proposed using inter-channel and intra-channel correlograms to exploit full color information and the inter-pixel relations on the same color planes and across the planes.
View Article and Find Full Text PDF