The noradrenergic Locus Cœruleus is one of the major arousal structures involved in inducing wakefulness. While brain noradrenaline (NA) amounts display 24-h variations, the origin of NA rhythm is currently unknown. In this study, we tested the hypothesis that NA rhythm could result from its rhythmic synthesis.
View Article and Find Full Text PDFIn mammals, behavioral activity is regulated both by the circadian system, orchestrated by the suprachiasmatic nucleus (SCN), and by arousal structures, including the serotonergic system. While the SCN is active at the same astronomical time in diurnal and nocturnal species, little data are available concerning the serotonergic (5HT) system in diurnal mammals. In this study, we investigated the functioning of the 5HT system, which is involved both in regulating the sleep/wake cycle and in synchronizing the SCN, in a diurnal rodent, Arvicanthis ansorgei.
View Article and Find Full Text PDFThe duration of daytime light phase (photoperiod) controls reproduction in seasonal mammals. Syrian hamsters are sexually active when exposed to long photoperiod, while gonadal atrophy is observed after exposure to short photoperiod. The photorefractory period, or photorefractoriness, is a particular state of spontaneous recrudescence of sexual activity that occurs after a long-term exposure to short photoperiod.
View Article and Find Full Text PDFThe dromedary camel (Camelus dromedarius) is a desert mammal whose cycles in reproductive activity ensure that the offspring's birth and weaning coincide with periods of abundant food resources and favorable climate conditions. In this study, we assessed whether kisspeptin (Kp) and arginine-phenylalanine (RF)-amide related peptide-3 (RFRP-3), two hypothalamic peptides known to regulate the mammalian hypothalamo-pituitary gonadal axis, may be involved in the seasonal control of camel's reproduction. Using specific antibodies and riboprobes, we found that Kp neurons are present in the preoptic area (POA), suprachiasmatic (SCN), and arcuate (ARC) nuclei, and that RFRP-3 neurons are present in the paraventricular (PVN), dorsomedial (DMH), and ventromedial (VMH) hypothalamic nuclei.
View Article and Find Full Text PDFRestricted feeding is well known to affect expression profiles of both clock and metabolic genes. However, it is unknown whether these changes in metabolic gene expression result from changes in the molecular clock or in feeding behavior. Here we eliminated the daily rhythm in feeding behavior by providing 6 meals evenly distributed over the light/dark-cycle.
View Article and Find Full Text PDFBackground: Propofol anesthesia triggers phase-advances of circadian rhythms controlled by the suprachiasmatic nuclei (SCN), the master clock. Besides, inhalational anesthesia has been associated with a subsequent reduction of Per2 mRNA levels in the whole brain of rodents. The acute effects of propofol anesthesia per se on the SCN molecular clockwork remain unclear.
View Article and Find Full Text PDFThe lateral habenula (LHb) is involved in emotional and cognitive behaviors. Recently, we have shown in rats that blockade of excitatory inputs to the LHb not only induced deficits of memory retrieval in the water maze, but also altered swim strategies (i.e.
View Article and Find Full Text PDFRF-(Arg-Phe) related peptides (RFRP-1 and -3) are considered to play a role in the seasonal regulation of reproduction; however, the effect of the peptides depends on species and gender. This study aimed at comparing the RFRP system in male and female Syrian hamsters over long and short photoperiods to investigate the neuroanatomical basis of these differential effects. The neuroanatomical distribution of RFRP neurons and fibers, revealed using an antiserum recognizing RFRP-1 and -3, as well as GPR147 mRNA, are similar in male and female Syrian hamsters.
View Article and Find Full Text PDFThe kisspeptin (Kp) neurons in the anteroventral periventricular nucleus (AVPV) are essential for the preovulatory LH surge, which is gated by circulating estradiol (E2) and the time of day. We investigated whether AVPV Kp neurons in intact female mice may be the site in which both E2 and daily signals are integrated and whether these neurons may host a circadian oscillator involved in the timed LH surge. In the afternoon of proestrous day, Kp immunoreactivity displayed a marked and transient decrease 2 hours before the LH surge.
View Article and Find Full Text PDFSeasonal mammals use the photoperiodic variation in the nocturnal production of the pineal hormone melatonin to synchronize their reproductive activity with seasons. In rodents, the (SD) short day profile of melatonin secretion has long been proven to inhibit reproductive activity. Lately, we demonstrated that melatonin regulates the expression of the hypothalamic peptides kisspeptins (Kp) and RFamide-related peptide-3 (RFRP-3), recently discovered as potent regulators of gonadotropin-releasing hormone (GnRH) neuron activity.
View Article and Find Full Text PDFThe Syrian hamster (Mesocricetus auratus) is a widely used species for the study of biological clock synchronization and photoperiodism. The serotoninergic system arising from the median (MnR) and the dorsal raphé (DR) is a major actor in circadian clock synchronization. This serotoninergic system is also associated with functions and behaviours influenced by seasonal changes.
View Article and Find Full Text PDFExpression of amyloid precursor protein (APP) is critical to the etiology of Alzheimer's disease (AD). Consequently, regulating APP expression is one approach to block disease progression. To this end, APP can be targeted at the levels of transcription, translation, and protein stability.
View Article and Find Full Text PDFBrain Res Mol Brain Res
January 2004
Rhythms in pineal melatonin synthesis are controlled by the biological clock located in the suprachiasmatic nuclei. The endogenous clock oscillations rely upon genetic mechanisms involving clock genes coding for transcription factors working in negative and positive feedback loops. Most of these clock genes are expressed rhythmically in other tissues.
View Article and Find Full Text PDFThe suprachiasmatic nuclei (SCN) contain the main clock of the mammalian circadian system. The endogenous oscillation machinery involves interactive positive and negative transcriptional and posttranslational feedback loops involving the clock genes Per1, Per2, Per3, Clock, Bmal1, Cry1 and Cry2. The SCN endogenous oscillation is entrained to 24 h by the light/dark cycle.
View Article and Find Full Text PDFBrain Res Mol Brain Res
June 2003
In mammals, interacting transcriptional/post-translational feedback loops involving 'clock genes' and their protein products control circadian organisation. These genes are not only expressed in the master circadian clock of the suprachiasmatic nuclei (SCN) but also in many peripheral tissues where they exhibit similar but not identical dynamic to that seen in the SCN. Among these peripheral tissues, the pars tuberalis (PT) of the pituitary expresses clock genes.
View Article and Find Full Text PDFThe suprachiasmatic nuclei (SCN) of the hypothalamus contain the master circadian clock in mammals. Nocturnal light pulses that reset the circadian clock also lead to rapid increases in levels of Per1 and Per2 mRNA in the SCN, suggesting that these genes are involved in the synchronization to light. During the day, when light has no phase-shifting effects in nocturnal rodents, the consequences of light exposure for Per expression have been less thoroughly studied.
View Article and Find Full Text PDFObjectives: The pineal gland transduces photoperiodic informations to the neuroendocrine axis through the nocturnally melatonin secretion. This hormonal message plays a major role in the biological rhythm regulation. By autoradiography, more than 130 melatonin putative targets have been reported in the central nervous system (CNS) and in peripheral tissues.
View Article and Find Full Text PDFThe suprachiasmatic nuclei (SCN) contain the master circadian pacemaker in mammals. Generation and maintenance of circadian oscillations involve clock genes which interact to form transcriptional/translational loops and constitute the molecular basis of the clock. There is some evidence that the SCN clock can integrate variations in day length, i.
View Article and Find Full Text PDFThe molecular mechanisms of the mammalian circadian clock located in the suprachiasmatic nucleus have been essentially studied in nocturnal species. Currently, it is not clear if the clockwork and the synchronizing mechanisms are similar between diurnal and nocturnal species. Here we investigated in a day-active rodent Arvicanthis ansorgei, some of the molecular mechanisms that participate in the generation of circadian rhythmicity and processing of photic signals.
View Article and Find Full Text PDFPer1 and Per2, two clock genes rhythmically expressed in the suprachiasmatic nucleus (SCN), are implicated in the molecular mechanism of the circadian pacemaker and play a major role in its entrainment by light. To date, it is not known if every cell of the SCN, a heterogeneous structure in respect of neuropeptide content, expresses clock genes equally. The aim of this study was to identify, by single and double non-radioactive and/or radioactive hybridizations, the cell types (AVP, VIP and GRP) expressing Per1 or Per2 in the SCN of rats, (1) when Per are highly expressed during the daytime, and (2) after induction of Per expression by a light pulse at night.
View Article and Find Full Text PDFThe aim of the present study was to investigate the daily regulation of both MT1 and MT2 melatonin receptor subtype mRNA expression in the rat SCN in order to clarify their role in the daily variation of SCN melatonin receptors. Existing MT1 and MT2 partial clones were extended by PCR to 982 and 522 bp, respectively. However, while the MT1 clone allowed us to set up a highly sensitive in situ hybridization (ISH) method, we could not detect MT2 expression within the SCN.
View Article and Find Full Text PDFThe arylalkylamine-N-acetyltransferase (AA-NAT) expressed in the vertebrate pineal gland catalyzes the N-acetylation of the serotonin into N-acetylserotonin and is considered to be the rate limiting enzyme of the pineal melatonin synthesis. Indeed, dramatic changes in its activity throughout the 24-h period drive the large day/night variations in plasma melatonin concentrations. Recently, AA-NAT was cloned in the rat pineal.
View Article and Find Full Text PDFThe suprachiasmatic nuclei (SCN) are implicated in the control of circadian biological rhythms, and especially the melatonin nocturnal synthesis. In numerous rodents, melatonin has been shown to feed back on the SCN activity through high affinity receptors. In contrast, Syrian hamster SCN activity is unresponsive to melatonin injections.
View Article and Find Full Text PDF