Vinyl carbamate (VC) and ethyl carbamate (EC) induce the formation of lung tumors. The mechanism involves a two-step oxidation of EC to VC and VC to an epoxide, both of which are mediated mainly by CYP2E1. Interaction of the epoxide with DNA leads to the formation of DNA adducts, including 1,N(6)ethenodeoxyadenosine and 1,N(4)-ethenodeoxycytidine.
View Article and Find Full Text PDFVinyl carbamate (VC) is derived from ethyl carbamate (EC), a chemical found in alcoholic beverages and fermented foods. The objectives of this study were to characterize the formation of lung tumors induced by VC in F1 (Big BluexA/J) mice, and to identify the mutations formed in the Kras2 gene. In addition, we have tested the hypothesis that pretreatment with diallyl sulfone (DASO2) inhibits the adverse effects of VC.
View Article and Find Full Text PDFVinyl carbamate (VC) is a metabolite of ethyl carbamate (EC), a naturally occurring compound found in fermented foods and alcoholic beverages. CYP2E1 mediates the sequential oxidation of EC to VC and subsequently to the vinyl carbamate epoxide, which is believed to be the ultimate carcinogenic species. Here, we have tested the hypothesis that bioactivation of VC by CYP2E1 plays a central role in the development of its mutagenicity and clastogenicity, and further that inhibition of CYP2E1 by diallyl sulfone (DASO(2)) leads to diminution in their incidences.
View Article and Find Full Text PDFVinyl carbamate (VC) is derived from ethyl carbamate, a carcinogen formed in fermentation of food and alcoholic products. We have undertaken studies to test the hypothesis that an epoxide generated from VC oxidation leads to formation of 1,N6-ethenodeoxyadenosine (epsilon dAS). We have developed approaches using liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry for identification and quantitation of epsilon dAS.
View Article and Find Full Text PDFVinyl carbamate (VC) is a metabolite of ethyl carbamate (EC), a chemical found in alcoholic beverages and fermented foods. We undertook this study to: (i) evaluate the ability of both EC and VC to induce gene mutations in lung and various extrapulmonary tissues, and (ii) identify the type of mutations induced by the two compounds in various tissues. F1 (Big Blue x A/J) transgenic mice harboring the lambda cII transgene were used for identification and quantitation of mutations in vivo.
View Article and Find Full Text PDFDiallyl sulfone (DASO2) is a garlic derivative formed during cooking or after ingestion. Bioactivation of DASO2 in murine lung and liver results in formation of an epoxide that inactivates CYP2E1 and significantly decreases cytochrome P450 and heme levels. In this study, we tested the hypothesis that DASO2 metabolism leads to production of the heme adduct, N-alkylprotoporphyrin IX (N-alkylPP).
View Article and Find Full Text PDFThis study was undertaken to test the hypothesis that bronchiolar damage induced by trichloroethylene (TCE) is associated with bioactivation within the Clara cells with the involvement of CYP2E1 and CYP2F2. Histopathology confirmed dose-dependent Clara cell injury and disintegration of the bronchiolar epithelium in CD-1 mice treated with TCE doses of 500 to 1000 mg/kg i.p.
View Article and Find Full Text PDFPulmonary cytotoxicity induced by trichloroethylene (TCE) is associated with cytochrome P450-dependent bioactivation to reactive metabolites. In this investigation, studies were undertaken to test the hypothesis that TCE metabolism to chloral hydrate (CH) is mediated by cytochrome P450 enzymes, including CYP2E1, CYP2F, and CYP2B1. Recombinant rat CYP2E1 catalyzed TCE metabolism to CH with greater affinity than did the recombinant P450 enzymes, rat CYP2F4, mouse CYP2F2, rat CYP2B1, and human CYP2E1.
View Article and Find Full Text PDF1,1-Dichloroethylene (DCE) causes pulmonary injury that is characterized by necrosis of bronchiolar Clara cells. Mitochondria have been identified as an early target in the toxic response. Because mitochondria have been implicated in both necrotic and apoptotic cell death, we have undertaken studies to test the hypothesis that DCE induces apoptosis, in addition to necrosis, in murine lung.
View Article and Find Full Text PDFTrichloroethylene (TCE) is a prevalent occupational and environmental contaminant that has been reported to cause a variety of toxic effects. Here, we have undertaken studies to test the hypothesis that TCE exposure adversely affects sperm function and fertilization. Sperm retrieved from mice exposed to TCE (1000 ppm) by inhalation for 1 to 6 weeks were incubated in vitro with eggs isolated from superovulated female mice.
View Article and Find Full Text PDF1,1-Dichloroethylene (DCE) exposure to mice elicits lung toxicity that selectively targets bronchiolar Clara cells. The toxicity is mediated by DCE metabolites formed via cytochrome P450 metabolism. The primary metabolites formed are DCE epoxide, 2,2-dichloroacetaldehyde, and 2-chloroacetyl chloride.
View Article and Find Full Text PDF1,1-Dichloroethylene (DCE) exposure evokes lung toxicity with selective damage to bronchiolar Clara cells. Recent in vitro studies have implicated CYP2E1 and CYP2F2 in the bioactivation of DCE to 2-S-glutathionyl acetate [C], a putative conjugate of DCE epoxide with glutathione. An objective of this study was to test the hypothesis that bioactivation of DCE is catalyzed by both CYP2E1 and CYP2F2 in murine lung.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
July 2004
1,1-Dichloroethylene (DCE) causes dysfunction of hepatic mitochondria. As mitochondria have been implicated in apoptosis through opening of the permeability transition pore (PTP), we have undertaken studies to test the hypothesis that DCE induces apoptosis, in addition to necrosis, in murine liver. Our primary objective was to identify the biochemical events associated with DCE-induced apoptosis.
View Article and Find Full Text PDFStudies using normal or neoplastically transformed established mouse lung epithelial cell lines revealed a reduction in gap junctional, intercellular communication (GJIC) with transformation. To determine the stage in tumor development at which GJIC is interrupted, we used the well-established model of lung tumors induced in strain A/J mice by urethane. In this system, tumor development follows a well-characterized pattern; hyperplasias, adenomas, and carcinomas are manifested at approximately 8, 16, and 40 weeks after urethane treatment, respectively.
View Article and Find Full Text PDFWe have investigated the potential of the male reproductive tract to accumulate trichloroethylene (TCE) and its metabolites, including chloral, trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA). Human seminal fluid and urine samples from eight mechanics diagnosed with clinical infertility and exposed to TCE occupationally were analyzed. In in vivo experimental studies, TCE and its metabolites were determined in epididymis and testis of mice exposed to TCE (1000 ppm) by inhalation for 1 to 4 weeks.
View Article and Find Full Text PDFHepatotoxicity induced by 1,1-dichloroethylene (DCE) is mediated by cytochrome P450-dependent metabolism to reactive intermediates, including the epoxide. We have tested the hypothesis that mitochondria are a primary target of toxicity by investigating dose- and time-dependent effects of DCE on mitochondrial respiration. Hepatotoxicity, as assessed by serum alanine aminotransferase (ALT) activity, was evaluated.
View Article and Find Full Text PDFToxicol Appl Pharmacol
August 2002
The widespread occupational exposure to trichloroethylene (TCE) led us to test the hypothesis that TCE causes toxicity in the male reproductive system. We also investigated mechanisms mediating the potential cytotoxic response. Mice were exposed to TCE (1000 ppm) by inhalation for 6 h/day for 5 days/week for a total of 19 days.
View Article and Find Full Text PDF