Publications by authors named "Poh Choon Ooi"

The human brain possesses a remarkable ability to memorize information with the assistance of a specific external environment. Therefore, mimicking the human brain's environment-enhanced learning abilities in artificial electronic devices is essential but remains a considerable challenge. Here, a network of Ag nanowires with a moisture-enhanced learning ability, which can mimic long-term potentiation (LTP) synaptic plasticity at an ultralow operating voltage as low as 0.

View Article and Find Full Text PDF

Artificial electronic synapses are commonly used to simulate biological synapses to realize various learning functions, regarded as one of the key technologies in the next generation of neurological computation. This work used a simple spin coating technique to fabricate polyimide (PI):graphene quantum dots(GQDs) memristor structure. As a result, the devices exhibit remarkably stable exponentially decaying postsynaptic suppression current over time, as interpreted in the spike-timing-dependent plasticity phenomenon.

View Article and Find Full Text PDF

Intravenous cannulation is experientially traumatic to children. To minimize this, EMLA is applied on the would-be-cannulated area before IV cannula insertion. However, the time to achieve its maximum efficacy may be affected due to incomplete cutaneous absorption and the duration of application.

View Article and Find Full Text PDF

A new 2D titanium carbide (TiC), a low dimensional material of the MXene family has attracted remarkable interest in several electronic applications, but its unique structure and novel properties are still less explored in piezoelectric energy harvesters. Herein, a systematic study has been conducted to examine the role of TiC multilayers when it is incorporated in the piezoelectric polymer host. The 0.

View Article and Find Full Text PDF

We report a practical chemical vapor deposition (CVD) route to produce bilayer graphene on a polycrystalline Ni film from liquid benzene (CH) source at a temperature as low as 400 °C in a vertical cold-wall reaction chamber. The low activation energy of CH and the low solubility of carbon in Ni at such a low temperature play a key role in enabling the growth of large-area bilayer graphene in a controlled manner by a Ni surface-mediated reaction. All experiments performed using this method are reproducible with growth capabilities up to an 8 in.

View Article and Find Full Text PDF

Room-temperature ferromagnetism in the large and direct bandgap diluted magnetic semiconductor zinc oxide (ZnO) is attributed to the intrinsic defects and p-orbital-p-orbital (p-p) coupling interaction. However, due to oxidation, the ferromagnetism induced by defects is unstable. In the present work, the solution process synthesis route was utilized to grow pristine and bismuth-doped, highly crystalline ZnO nanowire (ZnO NW)-based samples.

View Article and Find Full Text PDF

In this study, we demonstrated the fabrication of the concave conic shape microneedle with the aid of COMSOL Multiphysics simulation. The stress and buckling of the microneedle structure were simulated by applying various loads ranging from 50 to 800 g perpendiculars to the tip in order to predict the occurrence of microneedles structure deformation. The simulation study indicated that the surface buckling deformation does not occur to the microneedle structure with the increment of the load.

View Article and Find Full Text PDF
Article Synopsis
  • * The device was created using a straightforward solution-based technique and showed impressive performance with a large multilevel memory capacity and a current ratio of 10, linked to the use of molybdenum disulfide and graphene quantum dots for charge trapping.
  • * Additional analyses, including transmission electron microscopy and electrical tests on endurance and retention, were carried out to evaluate the device's structure and stability at room temperature.
View Article and Find Full Text PDF

This work demonstrated a growth of well-aligned NiSi/SiC core-shell nanowires by a one-step process of hot-wire chemical vapor deposition on Ni-coated crystal silicon substrates at different thicknesses. The NiSi nanoparticles (60 to 207 nm) acted as nano-templates to initially inducing the growth of these core-shell nanowires. These core-shell nanowires were structured by single crystalline NiSi and amorphous SiC as the cores and shells of the nanowires, respectively.

View Article and Find Full Text PDF

We demonstrated a simple and scalable fabrication route of a nitrogen-doped reduced graphene oxide (N-rGO) photodetector on an 8 in. wafer-scale. The N-rGO was prepared through in situ plasma treatment in an acetylene-ammonia atmosphere to achieve an n-type semiconductor with substantial formation of quaternary-N substituted into the graphene lattice.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a copper oxide nanowire (CuO NW) sensor that detects hydrogen gas (H2) effectively when exposed to ultraviolet (UV) light.
  • The sensor exhibits better stability and response at both room temperature and 100°C, especially benefiting from UV light, which enhances its performance.
  • UV light appears to improve the interaction between the CuO NWs and hydrogen gas, allowing the sensor to function well without needing high temperatures.
View Article and Find Full Text PDF

The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition.

View Article and Find Full Text PDF

This study describes a novel fabrication technique to grow gold nanoparticles (AuNPs) directly on seeded ZnO sacrificial template/polymethylsilsesquioxanes (PMSSQ)/Si using low-temperature hydrothermal reaction at 80°C for 4 h. The effect of non-annealing and various annealing temperatures, 200°C, 300°C, and 400°C, of the ZnO-seeded template on AuNP size and distribution was systematically studied. Another PMMSQ layer was spin-coated on AuNPs to study the memory properties of organic insulator-embedded AuNPs.

View Article and Find Full Text PDF