Publications by authors named "Poh Chee Ong"

SgK269/PEAK1 is a pseudokinase and scaffolding protein that plays a critical role in regulating growth factor receptor signal output and is implicated in the progression of several cancers, including those of the breast, colon, and pancreas. SgK269 is structurally related to SgK223, a human pseudokinase that also functions as a scaffold but recruits a distinct repertoire of signaling proteins compared with SgK269. Structural similarities between SgK269 and SgK223 include a predicted α-helical region (designated CH) immediately preceding the conserved C-terminal pseudokinase (PK) domain.

View Article and Find Full Text PDF

Previously we reported that IL-17(+) T cells, primarily IL-17(+) γδ cells, are increased in mice lacking the protease inhibitor serpinB1 (serpinb1(-/-) mice). Here we show that serpinB1-deficient CD4 cells exhibit a cell-autonomous and selective deficiency in suppressing T helper 17 (Th17) cell differentiation. This suggested an opposing role for one or more protease in promoting Th17 differentiation.

View Article and Find Full Text PDF

The complement system plays crucial roles in the immune system, but incorrect regulation causes inflammation and targeting of self-tissue, leading to diseases such as systemic lupus erythematosus, rheumatoid arthritis and age-related macular degeneration. In vivo, the initiating complexes of the classical complement and lectin pathways are controlled by SERPING1 [(C1 inhibitor) serpin peptidase inhibitor, clade G, member 1], which inactivates the components C1s and MASP-2 (mannan-binding lectin serine peptidase 2). GAGs (glycosaminoglycan) and DXS (dextran sulfate) are able to significantly accelerate SERPING1-mediated inactivation of C1s, the key effector enzyme of the classical C1 complex, although the mechanism is poorly understood.

View Article and Find Full Text PDF

Chromatin condensation to heterochromatin is a mechanism essential for widespread suppression of gene transcription, and the means by which a chromatin-associated protein, MENT, induces a terminally differentiated state in cells. MENT, a protease inhibitor of the serpin superfamily, is able to undergo conformational change in order to effect enzyme inhibition. Here, we sought to investigate whether conformational change in MENT is 'fine-tuned' in the presence of a bound ligand in an analogous manner to other serpins, such as antithrombin where such movements are reflected by a change in intrinsic tryptophan fluorescence.

View Article and Find Full Text PDF

A balance between proteolytic activity and protease inhibition is crucial to the appropriate function of many biological processes. There is mounting evidence for the presence of both papain-like cysteine proteases and serpins with a corresponding inhibitory activity in the nucleus. Well characterized examples of cofactors fine tuning serpin activity in the extracellular milieu are known, but such modulation has not been studied for protease-serpin interactions within the cell.

View Article and Find Full Text PDF

Most serpins are associated with protease inhibition, and their ability to form loop-sheet polymers is linked to conformational disease and the human serpinopathies. Here we describe the structural and functional dissection of how a unique serpin, the non-histone architectural protein, MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein), participates in DNA and chromatin condensation. Our data suggest that MENT contains at least two distinct DNA-binding sites, consistent with its simultaneous binding to the two closely juxtaposed linker DNA segments on a nucleosome.

View Article and Find Full Text PDF