(+)-Cyclazosin [(+)-1] is one of most selective antagonists of the α-adrenoceptor subtype (selectivity ratios, α/α = 13, α/α = 38-39). To improve the selectivity, we synthesized and pharmacologically studied the blocking activity against α-adrenoceptors of several homochiral analogues of (+)-cyclazosin featuring different substituents on the carbonyl or amine groups, namely (-)-2, (+)-3, (-)-4-(-)-8, (+)-9. Moreover, we studied the activity of some their opposite enantiomers, namely (-)-1, (-)-3, (+)-6, and (-)-9, to evaluate the influence of stereochemistry on selectivity.
View Article and Find Full Text PDFNew α-adrenoreceptor (α-AR) antagonists related to prazosin and doxazosin were synthesized by replacing piperazine ring with (S)- or (R)-3-aminopiperidine. Binding studies indicated that the S configuration at the 3-C position of the piperidine ring is crucial for an optimal interaction of the compounds at all three α-AR subtypes. Quinazolines 9 and 10, bearing a quinone ring on the lateral chain, exhibited also potent antiproliferative activity in LNCaP androgen-sensitive prostate cancer cell lines, higher than that of doxazosin.
View Article and Find Full Text PDFN-((6,6-diphenyl-1,4-dioxan-2-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-amine (3) is a potent 5-HT receptor and α-adrenoceptor (α-AR) ligand. Analogues 5-10 were rationally designed and prepared to evaluate whether electronic and/or lipophilic properties of substituents in the ortho position of its phenoxy moiety exert any favorable effects on the affinity/activity at 5-HT receptor and improve selectivity over α-ARs. To rationalize the experimental observations and derive information about receptor-ligand interactions of the reported ligands, docking studies, using 5-HT and α-AR models generated by homology techniques, and a retrospective computational study were performed.
View Article and Find Full Text PDFArylpiperazines 2-11 were synthesized, and their biological profiles at α1-adrenergic receptors (α1-ARs) assessed by binding assays in CHO cells expressing human cloned subtypes and by functional experiments in isolated rat vas deferens (α1A), spleen (α1B), and aorta (α1D). Modifications at the 1,3-benzodioxole and phenyl phamacophoric units resulted in the identification of a number of potent compounds (moderately selective with respect to the α1b-AR), in binding experiments. Notably, compound 7 (LDT451) showed a subnanomolar pKi of 9.
View Article and Find Full Text PDFMetabotropic glutamate receptor 5 (mGlu5) is a biological target implicated in major neurological and psychiatric disorders. In the present study, we have investigated structural determinants of the interaction of negative allosteric modulators (NAMs) with the seven-transmembrane (7TM) domain of mGlu5. A homology model of the 7TM receptor domain built on the crystal structure of the mGlu1 template was obtained, and the binding modes of known NAMs, namely MPEP and fenobam, were investigated by docking and molecular dynamics simulations.
View Article and Find Full Text PDFOpioid addiction is often characterized as a chronic relapsing condition due to the severe somatic and behavioral signs, associated with depressive disorders, triggered by opiate withdrawal. Since prolonged abstinence remains a major challenge, our interest has been addressed to such objective. Exploring multitarget interactions, the present investigation suggests that 3 or its (S)-enantiomer and 4, endowed with effective α2C-AR agonism/α2A-AR antagonism/5-HT1A-R agonism, or 7 and 9-11 producing efficacious α2C-AR agonism/α2A-AR antagonism/I2-IBS interaction might represent novel multifunctional tools potentially useful for reducing withdrawal syndrome and associated depression.
View Article and Find Full Text PDF5-HT(1A) receptor and α(1)-adrenoreceptor (α(1)-AR) binding sites recognized by the 1,4-dioxanes 2-4 display reversed stereochemical requirements. (S)-2 proved to be a potent 5-HT(1A) receptor agonist highly selective over α(1)-AR subtypes. Chirality influenced the anticancer activity of 3 and 4 in human prostate cancer cells (PC-3): (R)-4, eutomer at the α(1d)-AR subtype, was the most potent.
View Article and Find Full Text PDFTamsulosin (-)-1 is the most utilized α(1)-adrenoceptor antagonist in the benign prostatic hyperplasia therapy owing to its uroselective antagonism and capability in relieving both obstructive and irritative lower urinary tract symptoms. Here we report the synthesis and pharmacological study of the homochiral (-)-1 analogues (-)-2-(-)-5, bearing definite modifications in the 2-substituted phenoxyethylamino group in order to evaluate their influence on the affinity profile for α(1)-adrenoceptor subtypes. The benzyl analogue (-)-3, displaying a preferential antagonist profile for α1A-than α1D-and α1B-adrenoceptors, and a 12-fold higher potency at α1A-adrenoceptors with respect to the α1B subtype, may have improved uroselectivity compared to (-)-1.
View Article and Find Full Text PDFStarting from compounds previously identified as alpha(1)-adrenoceptor antagonists that were also found to bind to the 5-HT(1A) receptor, in an attempt to separate the two activities, a new series of 5-HT(1A) receptor agonists was identified and shown to have high potency and/or high selectivity. Of these, compound 13, which combines high selectivity (5-HT(1A)/alpha(1)=151) and good agonist potency (pD(2)=7.82; E(max)=76), was found to be the most interesting.
View Article and Find Full Text PDFDoxazosin analogues 1-3 and 1a were synthesized and investigated at alpha1-adrenoceptors and PC-3, DU-145, and LNCaP human prostate cancer cells. Compound 1 (cyclodoxazosin) was a potent alpha(1B)-adrenoceptor antagonist displaying antiproliferative activity higher than that of doxazosin in cancer cells in vitro and in vivo, respectively. Because of its antitumor efficacy at low concentrations, lower apoptotic activity in NHDF vs tumor cells, and antiangiogenetic effect, 1 showed a better therapeutic profile relative to doxazosin.
View Article and Find Full Text PDFConformational restriction of naftopidil proved to be compatible with binding at alpha(1) adrenoceptor subtypes and 5-HT receptor 1A (5-HT(1A)), and led to the discovery of a new class of ligands with a 1,3-dioxolane (1,3-oxathiolane, 1,3-dithiolane) structure. Compound 7 shows the highest affinity toward alpha(1a) and alpha(1d) adrenoceptor subtypes (pK(i) alpha(1a) = 9.58, pK(i) alpha(1d) = 9.
View Article and Find Full Text PDFNovel 1,4-dioxane compounds structurally related to WB 4101 (1) were prepared in order to investigate the possibility that the quite planar 1,4-benzodioxane template of 1 might be replaced by the less conformationally constrained 1,4-dioxane ring. The biological profiles of the new compounds were assessed using binding assays at human cloned alpha 1-adrenoreceptor (alpha 1-AR) subtypes and 5-HT 1A receptors, expressed in Chinese hamster ovary and HeLa cell membranes, respectively, and by functional experiments in isolated rat vas deferens (alpha 1A), spleen (alpha 1B), and aorta (alpha 1D). Moreover, the cytotoxic effects of the novel compounds were determined in PC-3 prostate cancer cells.
View Article and Find Full Text PDFObjective: To investigate the role of Group I metabotropic glutamate (mGlu) receptor subtypes on reflex-induced micturition in anaesthetized and conscious rats using selective mGlu1 (NPS 2407 and R214127) and mGlu5 (MPEP, MTEP, and SIB1893) allosteric antagonists.
Materials And Methods: The affinity of the compounds at mGlu1 and mGlu5 receptor subtypes was evaluated by displacement of tritiated R214127 and MPEP, respectively, from rat brain tissue. Effects of intravenous (i.
alpha(1)-Adrenoceptor selective antagonists are crucial in investigating the role and biological functions of alpha(1)-adrenoceptor subtypes. We synthesized and studied the alpha(1)-adrenoceptor blocking properties of new molecules structurally related to the alpha(1B)-adrenoceptor selective antagonist (+)-cyclazosin, in an attempt to improve its receptor selectivity. In particular, we investigated the importance of substituents introduced at position 5 of the 2-furan moiety of (+)-cyclazosin and its replacement with classical isosteric rings.
View Article and Find Full Text PDFA series of new alpha1-adrenoreceptor antagonists (5-18) was prepared by introducing various substituents (Topliss approach) into the ortho, meta, and para positions of the benzyloxy function of the phendioxan open analogue 4 ("openphendioxan"). All the compounds synthesized were potent antagonists and generally displayed, similarly to 4, the highest affinity values at alpha1D- with respect to alpha1A- and alpha1B-AR subtypes and 5-HT1A subtype. By sulforhodamine B (SRB) assay on human PC-3 prostate cancer cells, the new compounds showed antitumor activity (estimated on the basis of three parameters GI50, TGI, LC50), at low micromolar concentration, with 7 ("clopenphendioxan") exhibiting the highest efficacy.
View Article and Find Full Text PDFBased on a pharmacophore alignment on known non-competitive mGluR5 inhibitors applying 4SCan technology, a new lead series was identified and further structurally investigated. K(i)'s as low as around 100 nM were achieved.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2005
A series of new 1,2,4-benzothiadiazine derivatives with an arylpiperazine mojety linked at position 3 of the heterocyclic ring were synthesized and assessed for their pharmacological profiles at alpha(1)-adrenoceptor subtypes (alpha(1A), alpha(1B) and alpha(1D)) by functional experiments and by in vitro binding studies at human cloned 5-HT(1A) receptor. Compound 1 was identified as a novel alpha(1D) antagonist (pK(b)alpha(1D)=7.59; alpha(1D)/alpha(1A)>389; alpha(1D)/alpha(1B)=135) with high selectivity over 5-HT(1A) receptor (5-HT(1A)/alpha(1D)<0.
View Article and Find Full Text PDFIn the attempt to define more accurately structure-affinity relationships for sigma(1) and sigma(2) ligands, we synthesized and tested on sigma subtype receptors a series of aralkyl derivatives of 4-benzylpiperidine, in which the effect of modifications on the aralkyl moiety was studied in a systematic way. The affinity of the compounds here described varied to a great extent, with a sigma(2)/sigma(1) selectivity ranging from 0.1 to 9.
View Article and Find Full Text PDFIn the present study, more than 75 compounds structurally related to BMY 7378 have been designed and synthesized. Structural variations of each part of the reference molecule have been introduced, obtaining highly selective ligands for the alpha(1d) adrenergic receptor. The molecular determinants for selectivity at this receptor are essentially held by the phenyl substituent in the phenylpiperazine moiety.
View Article and Find Full Text PDFIn a search for structurally new alpha(1)-adrenoreceptor (alpha(1)-AR) antagonists, prazosin (1)-related compounds 2-11 were synthesized and their affinity profiles were assessed by functional experiments in isolated rat vas deferens (alpha(1A)), spleen (alpha(1B)), and aorta (alpha(1D)) and by binding assays in CHO cells expressing human cloned alpha(1)-AR subtypes. Transformation of the piperazinylquinazoline moiety of 1 into an aminomethyltetrahydroacridine system afforded compound 2, endowed with reduced affinity, in particular for the alpha(1A)-AR subtype. Then, to investigate the optimal features of the tricyclic moiety, the aliphatic ring of 2 was modified by synthesizing the lower and higher homologues 3 and 4.
View Article and Find Full Text PDFA recent uroselective alpha(1)-adrenoceptor antagonist, REC15/2739, has been joined with nitrooxy and furoxan NO-donor moieties to give new NO-donor alpha(1)-antagonists. All the compounds studied proved to be potent and selective ligands of human cloned alpha(1a)-receptor subtype. Derivatives 6 and 7 were able to relax the prostatic portion of rat vas deferens contracted by (-)-noradrenaline because of both their alpha(1A)-antagonist and their NO-donor properties.
View Article and Find Full Text PDFA series of quinazoline derivatives, 2-20, structurally related to the racemic alpha(1)-adrenoceptor antagonist cyclazosin (1), were synthesized and evaluated for their functional antagonism at alpha(1)- and alpha(2)-adrenoceptors and for their binding affinity at human cloned alpha(1a)-, alpha(1b)- and alpha(1d)-adrenoceptor subtypes. They displayed, like 1, preferential antagonism and selectivity for alpha(1) versus alpha(2)-adrenoceptors. Compounds 10, 13, and 18 showed high potency at alpha(1)-adrenoceptors similar to that of 1 (pK(B) values 8.
View Article and Find Full Text PDF1,3-Dioxolane-based compounds (2-14) were synthesized, and the pharmacological profiles at alpha(1)-adrenoceptor subtypes were assessed by functional experiments in isolated rat vas deferens (alpha(1A)), spleen (alpha(1B)), and aorta (alpha(1D)). Compound 9, with a pA(2) of 7.53, 7.
View Article and Find Full Text PDFWB4101 (1)-related compounds 5-10 were synthesized, and their biological profile at alpha(1)-adrenoreceptor (AR) subtypes and 5-HT(1A) serotoninergic receptors was assessed by binding assays in Chinese hamster ovary and HeLa cell membranes expressing the human cloned receptors. Moreover, their receptor selectivity was further determined in functional experiments in isolated rat prostate (alpha(1A)), vas deferens (alpha(1A)), aorta (alpha(1D)), and spleen (alpha(1B)). In functional assays, compound 5 was the most potent at alpha(1D)-ARs with a reversed selectivity profile (alpha(1D) > alpha(1A) > alpha(1B)) relative to both prototype 1 and phendioxan (2) (alpha(1A) > alpha(1D) > alpha(1B)), whereas compound 8, bearing a carbonyl moiety at position 1, was the most potent at alpha(1A)-ARs with a selectivity profile similar to that of prototypes.
View Article and Find Full Text PDFThe present paper concerns the influence of conformational parameters on the recognition by rat 5-HT1A receptors of derivatives 4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]-1-(2-pyridinyl)piperazine (1a) and 3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-N-[2-(2-pyridyloxy)ethyl]propanamine (3b), two highly potent and selective 5-HT1A receptor ligands. Fifteen corresponding flexible and rigid analogues were prepared following several synthetic routes and were tested in binding assays with radioligands at 5-HT1A, D2, and alpha1 receptors from rat brain membranes. Among the new derivatives emerged trans-4-[4-(3-methoxyphenyl)cyclohexyl]-1-(2-pyridinyl)piperazine (trans-8a) and trans-N-[4-(3-methoxyphenyl)cyclohexyl]-2-(2-pyridyloxy)ethylamine (trans-8b).
View Article and Find Full Text PDF