Publications by authors named "Poet T"

1. Understanding species differences in the toxicokinetics of bisphenol A (BPA) is central to setting acceptable exposure limits for human exposures to BPA. BPA toxicokinetics have been well studied, with controlled oral dosing studies in several species and across a wide dose range.

View Article and Find Full Text PDF

A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model combined with Monte Carlo analysis of inter-individual variation was used to assess the effects of the insecticide, chlorpyrifos and its active metabolite, chlorpyrifos oxon in humans. The PBPK/PD model has previously been validated and used to describe physiological changes in typical individuals as they grow from birth to adulthood. This model was updated to include physiological and metabolic changes that occur with pregnancy.

View Article and Find Full Text PDF

The developmental effects of NMP are well studied in Sprague-Dawley rats following oral, inhalation, and dermal routes of exposure. Short-term and chronic occupational exposure limit (OEL) values were derived using an updated physiologically based pharmacokinetic (PBPK) model for NMP, along with benchmark dose modeling. Two suitable developmental endpoints were evaluated for human health risk assessment: (1) for acute exposures, the increased incidence of skeletal malformations, an effect noted only at oral doses that were toxic to the dam and fetus; and (2) for repeated exposures to NMP, changes in fetal/pup body weight.

View Article and Find Full Text PDF

Glycol ethers are a widely used class of solvents that may lead to both workplace and general population exposures. Biomonitoring studies are available that have quantified glycol ethers or their metabolites in blood and/or urine amongst exposed populations. These biomonitoring levels indicate exposures to the glycol ethers, but do not by themselves indicate a health hazard risk.

View Article and Find Full Text PDF

Ethanol-based topical antiseptic hand rubs, commonly referred to as alcohol-based hand sanitizers (ABHS), are routinely used as the standard of care to reduce the presence of viable bacteria on the skin and are an important element of infection control procedures in the healthcare industry. There are no reported indications of safety concerns associated with the use of these products in the workplace. However, the prevalence of such alcohol-based products in healthcare facilities and safety questions raised by the U.

View Article and Find Full Text PDF

Chronic exposure to methyl isobutyl ketone (MIBK) resulted in an increase in the incidence of renal tubule adenomas and occurrence of renal tubule carcinomas in male, but not female Fischer 344 rats. Since a number of chemicals have been shown to cause male rat renal tumors through the α2u nephropathy-mediated mode of action, the objective of this study is to evaluate the ability of MIBK to induce measures of α2u nephropathy including renal cell proliferation in male and female F344 rats following exposure to the same inhalation concentrations used in the National Toxicology Program (NTP) cancer bioassay (0, 450, 900, or 1800ppm). Rats were exposed 6h/day for 1 or 4 weeks and kidneys excised approximately 18h post exposure to evaluate hyaline droplet accumulation (HDA), α2u staining of hyaline droplets, renal cell proliferation, and to quantitate renal α2u concentration.

View Article and Find Full Text PDF

A number of biomonitoring surveys have been performed for chlorpyrifos (CPF) and its metabolite (3,5,6-trichloro-2-pyridinol, TCPy); however, there is no available guidance on how to interpret these data in a health risk assessment context. To address this gap, Biomonitoring Guidance Values (BGVs) are developed using a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model. The PBPK/PD model is used to predict the impact of age and human variability on the relationship between an early marker of cholinesterase (ChE) inhibition in the peripheral and central nervous systems [10% red blood cell (RBC) ChE inhibition] and levels of systemic biomarkers.

View Article and Find Full Text PDF

1. Chlorpyrifos (CPF) is an important pesticide used to control crop insects. Human Exposures to CPF will occur primarily through oral exposure to residues on foods.

View Article and Find Full Text PDF

Sensitivity to some chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to predict disposition of chlorpyrifos and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans.

View Article and Find Full Text PDF

Physiologically-based pharmacokinetic (PBPK) modeling offers a scientifically-sound framework for integrating mechanistic data on absorption, distribution, metabolism and elimination to predict the time-course of parent chemical, metabolite(s) or biomarkers in the exposed organism. A major advantage of PBPK models is their ability to forecast the impact of specific mechanistic processes and determinants on the tissue dose. In this regard, they facilitate integration of data obtained with in vitro and in silico methods, for making predictions of the tissue dosimetry in the whole animal, thus reducing and/or refining the use of animals in pharmacokinetic and toxicity studies.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is an organophosphorus insecticide, and neurotoxicity results from inhibition of acetylcholinesterase (AChE) by its metabolite, chlorpyrifos-oxon. Routine consumption of alcohol and tobacco modifies metabolic and physiological processes impacting the metabolism and pharmacokinetics of other xenobiotics, including pesticides. This study evaluated the influence of repeated ethanol and nicotine coexposure on in vivo CPF dosimetry and cholinesterase (ChE) response (ChE- includes AChE and/or butyrylcholinesterase (BuChE)).

View Article and Find Full Text PDF

Probabilistic models of interindividual variation in exposure and response were linked to create a source-to-outcome population model. This model was used to investigate cholinesterase inhibition from dietary exposures to an insecticide (chlorpyrifos) in populations of adults and 3 year old children. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was used to calculate the variation in sensitivity occurring from interindividual variability in physiology, metabolism, and physical activity levels.

View Article and Find Full Text PDF

The paper presents a case study of the application of a "source-to-outcome" model for the evaluation of the health outcomes from dietary exposures to an insecticide, chlorpyrifos, in populations of adults (age 30) and children (age 3). The model is based on publically-available software programs that characterize the longitudinal dietary exposure and anthropometry of exposed individuals. These predictions are applied to a validated PBPK/PD model to estimate interindividual and longitudinal variation in brain and RBC AChE inhibition (key events) and chlorpyrifos concentrations in blood and TCPy in urine (biomarkers of exposure).

View Article and Find Full Text PDF

Age-dependent chlorpyrifos (CPF) metabolism was quantified by in vitro product formation in human hepatic microsomes (ages 13 days to 75 years) and plasma (ages 3 days to 43 years) with gas chromatography-mass spectrometry. Hepatic CPF cytochrome P450 desulfuration [CPF to chlorpyrifos-oxon (CPF-oxon)] and dearylation (CPF to 3,5,6-trichloro-2-pyridinol) V(max) values were 0.35 ± 0.

View Article and Find Full Text PDF

A physiologically based pharmacokinetic (PBPK) model for hydroquinone (HQ) was refined to include an expanded description of HQ-glucuronide metabolites and a description of dermal exposures to support route-to-route and cross-species extrapolation. Total urinary excretion of metabolites from in vivo rat dermal exposures was used to estimate a percutaneous permeability coefficient (K(p); 3.6×10(-5) cm/h).

View Article and Find Full Text PDF

Routine use of tobacco products may modify physiological and metabolic functions, including drug metabolizing enzymes, which may impact the pharmacokinetics of environmental contaminants. Chlorpyrifos is an organophosphorus (OP) insecticide that is bioactivated to chlorpyrifos-oxon, and manifests its neurotoxicity by inhibiting acetylcholinesterase (AChE). The objective of this study was to evaluate the impact of repeated nicotine exposure on the pharmacokinetics of chlorpyrifos (CPF) and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine and also to determine the impact on cholinesterase (ChE) activity in plasma and brain.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is a commonly used diethylphosphorothionate organophosphorus (OP) insecticide. Diethylphosphate (DEP), diethylthiophosphate (DETP) and 3,5,6-trichloro-2-pyridinol (TCPy) are products of both in vivo metabolism and environmental degradation of CPF and are routinely measured in urine as biomarkers of exposure. Hence, urinary biomonitoring of TCPy, DEP and DETP may be reflective of an individual's contact with both the parent pesticide and exposure to these metabolites in the environment.

View Article and Find Full Text PDF

Establishing an occupational exposure limit (OEL) for N-methyl pyrrolidone (NMP) is important due to its widespread use as a solvent. Based on studies in rodents, the most sensitive toxic end point is a decrease in fetal/pup body weights observed after oral, dermal, and inhalation exposures of dams to NMP. Evidence indicates that the parent compound is the causative agent.

View Article and Find Full Text PDF

Methyl iodide (MeI) is an intermediate in the manufacture of some pesticides and pharmaceuticals, and is under review for US registration as a non-ozone depleting alternative for methyl bromide for pre-plant soil fumigation. MeI is primarily metabolized via conjugation with glutathione (GSH), with further metabolism to S-methyl cysteine and methanethiol. To facilitate extrapolations of animal pharmacokinetic data to humans, rate constants for the GSH metabolism of MeI were determined in cytosols prepared from the liver and kidneys of rats, human donors, female rabbits, and rabbit fetuses, from rabbit olfactory and respiratory epithelium, and from rabbit and rat blood using a headspace vial equilibration technique and two-compartment mathematical model.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is a commonly used organophosphorus pesticide. A number of toxicity and mechanistic studies have been conducted in animals, where CPF has been administered via a variety of different exposure routes and dosing vehicles. This study compared chlorpyrifos (CPF) pharmacokinetics using oral, intravenous (IV), and subcutaneous (SC) exposure routes and corn oil, saline/Tween 20, and dimethyl sulfoxide (DMSO) as dosing vehicles.

View Article and Find Full Text PDF

Lipophilic molecules, like chlorpyrifos (CPF), present a special problem for interpretation of biomonitoring data because both the environmental dose of CPF and the physiological (pregnancy, diet, etc.) or pathological levels of blood lipids will affect the concentrations of CPF measured in blood. The objective of this study was to investigate the distribution of CPF between plasma and tissues when lipid levels are altered in late pregnancy.

View Article and Find Full Text PDF

The routine use of tobacco products may modify key metabolizing systems, which will further impact the metabolism of environmental contaminants. The objective of this study was to quantify the effect of repeated in vivo exposures to nicotine, a major pharmacologically active component of cigarette smoke, on in vitro metabolism of chlorpyrifos (CPF). CPF is an organophosphorus (OP) insecticide that is metabolized by cytochrome P-450 (CYP450) to its major metabolites, chlorpyrifos-oxon (CPF-oxon) and 3,5,6-trichloro-2-pyridinol (TCP).

View Article and Find Full Text PDF

Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). It is anticipated that these OPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, B-esterases [carboxylesterase (CaE), butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE)] or PON-1 (A-esterase) oxon detoxification. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides.

View Article and Find Full Text PDF

Human risk and exposure assessments require dosimetry information. Species-specific tissue dose response will be driven by physiological and biochemical processes. While metabolism and pharmacokinetic data are often not available in humans, they are much more available in laboratory animals; metabolic rate constants can be readily derived in vitro.

View Article and Find Full Text PDF

1,4-Dioxane (CAS No. 123-91-1) is used primarily as a solvent or as a solvent stabilizer. It can cause lung, liver, and kidney damage at sufficiently high exposure levels.

View Article and Find Full Text PDF