Sandhoff disease, a neurodegenerative disorder characterized by the intracellular accumulation of GM2 ganglioside, is caused by mutations in the hexosaminidase beta-chain gene resulting in a hexosaminidase A (alphabeta) and B (betabeta) deficiency. A bicistronic lentiviral vector encoding both the hexosaminidase alpha and beta chains (SIV.ASB) has previously been shown to correct the beta-hexosaminidase deficiency and to reduce GM2 levels both in transduced and cross-corrected human Sandhoff fibroblasts.
View Article and Find Full Text PDFSandhoff disease is an autosomal recessive neurodegenerative disease characterized by a GM2 ganglioside intralysosomal accumulation. It is due to mutations in the beta-hexosaminidases beta-chain gene, resulting in a beta-hexosaminidases A (alphabeta) and B (betabeta) deficiency. Mono and bicistronic lentiviral vectors containing the HEXA or/and HEXB cDNAs were constructed and tested on human Sandhoff fibroblasts.
View Article and Find Full Text PDFThe endothelial cell (EC) dysfunction is a common characteristic of various pathologies that include atherosclerosis, hypertension, and Fabry's disease. Aware of the role of eNO and ACE in EC dysfunction, we questioned whether polymorphism of eNOS and/or ACE gene may be a common denominator in these pathologies. Patients with CHD (108), HT (109), Fabry's disease (37) and healthy subjects (control, 141) were genotyped for the eNOSG894T by RFLP-PCR technique and for eNOS4b/a, and ACEI/D polymorphisms by PCR amplification.
View Article and Find Full Text PDFSandhoff disease is a severe inherited neurodegenerative disorder resulting from deficiency of the beta-subunit of hexosaminidases A and B, lysosomal hydrolases involved in the degradation of G(M2) ganglioside and related metabolites. Currently, there is no viable treatment for the disease. Here, we show that adenovirus-mediated transfer of the beta-subunit of beta-hexosaminidase restored Hex A and Hex B activity after infection of Sandhoff fibroblasts.
View Article and Find Full Text PDFMuscle glycogen storage was measured by in vivo, natural abundance 13C nuclear magnetic resonance spectroscopy in distal and proximal lower limb segments of patients suffering from adult-onset acid maltase deficiency. Interleaved T1-weighted acquisitions of glycogen and creatine served to quantify glycogen excess. For acid maltase deficient patients (n=11), glycogen:creatine was higher than controls (n=12), (1.
View Article and Find Full Text PDFGaucher and Fabry's diseases are lysosomal storage disorders. They are due to glucocerebrosidase or alpha galactosidase deficiency, respectively. Gaucher disease, transmitted as an autosomal recessive trait, is frequent among Ashkenazi Jews.
View Article and Find Full Text PDFGaucher disease (GD) is an inherited glycolipid storage disorder resulting from the deficiency of glucocerebrosidase. It is the most frequent lysosomal storage disease in Romania, accounting for 70% of all lysosomal disorders diagnosed since 1997 in this country. The prevalence of six common mutations (N370S, L444P, R463C, 84GG, recNciI and recTL) and their phenotypic impact were studied in 20 type 1 GD patients of non-Jewish origin.
View Article and Find Full Text PDFThe gene encoding endothelial nitric oxide synthase (eNOS) is involved in abnormalities in nitric oxide (NO) synthesis that mediates functional damage of vascular cells, especially of endothelial cells (ECs), a common characteristic in cardiovascular diseases. In Fabry's disease, the characteristic mutation in the alpha-galactosidase A (alpha-gal A) gene induces large deposits of glycosphingolipids, particularly concentrated in ECs, a process associated with endothelial dysfunction. To determine whether in addition to alpha-gal A gene mutations, eNOS genetic variations are implicated in this process, we examined the genotypes of the missense Glu298Asp (G894T) variant in exon 7 and 27-bp tandem repeats in intron 4 (4b/a) in 19 patients with Fabry's disease, and 39 normal volunteers.
View Article and Find Full Text PDFGlycogenosis type II (GSD II) is a lysosomal disorder affecting skeletal and cardiac muscle. In the infantile form of the disease, patients display cardiac impairment, which is fatal before 2 years of life. Patients with juvenile or adult forms can present diaphragm involvement leading to respiratory failure.
View Article and Find Full Text PDFGene transfer into the central nervous system (CNS) is one of the foremost scientific challenges today. To give a brief survey of possible approaches to gene therapy in diseases affecting the CNS, we have selected the lysosomal storage diseases (LDS), which are an excellent model of both early-onset infantile neurological forms and late-onset adult psychiatric forms. Lysosomal storage diseases represent a group of about 50 monogenic metabolic disorders resulting from a deficiency in intralysosomal enzymes involved in macromolecule catabolism.
View Article and Find Full Text PDFLysosomal storage diseases are monogenic metabolic disorders resulting from a deficiency in intralysosomal enzymes involved in macromolecule catabolism. Various groups have been delineated according to the affected pathway and the accumulated substrate: mucopolysaccharidoses, lipidoses, glycoproteinoses and glycogenosis type II. Their clinical severity and the absence of efficient therapy for the majority of these disorders justify the development of gene transfer methods.
View Article and Find Full Text PDFObjective: To characterize the phenotypes of patients with juvenile and adult-onset acid maltase deficiency (AMD) in the French population and correlate them with genetic defects.
Background: AMD is an autosomal recessive disorder caused by the absence of the enzyme acid a-glucosidase (GAA). Patients are generally compound heterozygotes for various mutations in the GAA gene.
Pompe disease is a generalized lysosomal glycogenosis affecting essentially the skeletal muscles and the heart. It is due to the deficiency of acid alpha-glucosidase, also called acid maltase, involved in glycogen degradation by the cleavage of alpha-1,4 and alpha-1,6 glycosidic linkages. The severe infantile, milder juvenile, and late-onset or adult forms are associated under the generic name of glycogenoses type II.
View Article and Find Full Text PDFType 1 Gaucher disease (GD), a non-neuronopathic lysosomal storage disorder, results from the deficient activity of acid beta-glucosidase (GBA). Type 1 disease is panethnic but is more prevalent in individuals of Ashkenazi Jewish (AJ) descent. Of the causative GBA mutations, N370S is particularly frequent in the AJ population, (q approximately .
View Article and Find Full Text PDFFabry disease (FD) (angiokeratoma corporis diffusum) is an X-linked inborn error of glycosphingolipid metabolism caused by defects in the lysosomal alpha-galactosidase A gene (GLA). The enzymatic defect leads to the systemic accumulation of neutral glycosphingolipids with terminal alpha-galactosyl moieties. Clinically, affected hemizygous males have angiokeratoma, severe acroparesthesia, renal failure, and vasculopathy of the heart and brain.
View Article and Find Full Text PDFThe severe neurodegenerative disorder, Tays-Sachs disease, is caused by a beta-hexosaminidase alpha-subunit deficiency which prevents the formation of lysosomal heterodimeric alpha-beta enzyme, hexosaminidase A (HexA). No treatment is available for this fatal disease; however, gene therapy could represent a therapeutic approach. We previously have constructed and characterized, in vitro, adenoviral and retroviral vectors coding for alpha- and beta-subunits of the human beta-hexosaminidases.
View Article and Find Full Text PDFGlycogen storage disease type II (GSD II) is an autosomal recessive disorder caused by defects in the lysosomal acid alpha-glucosidase (GAA) gene. We investigated the feasibility of using a recombinant adenovirus containing the human GAA gene under the control of the cytomegalovirus promoter (AdCMV-GAA) to correct the enzyme deficiency in different cultured cells from patients with the infantile form of GSD II. In GAA-deficient fibroblasts infected with AdCMV-GAA, transduction and transcription of the human transgene resulted in de novo synthesis of GAA protein.
View Article and Find Full Text PDFGaucher disease (GD) is one of the most prevalent lysosomal storage disorders and one of the rare genetic diseases now accessible to therapy. Outside the Ashkenazi Jewish community, a high molecular diversity is observed, leaving approximately 30% of alleles undetected. Nevertheless, very few exhaustive methods have been developed for extensive gene screening of a large series of patients.
View Article and Find Full Text PDFTay-Sachs disease is a severe neurodegenerative disorder due to mutations in the HEXA gene coding for the alpha-chain of the alpha-beta heterodimeric lysosomal enzyme beta-hexosaminidase A (HexA). Because no treatment is available for this disease, we have investigated the possibility of enzymatic correction of HexA-deficient cells by HEXA gene transfer. Human HEXA cDNA was subcloned into a retroviral plasmid generating to G.
View Article and Find Full Text PDFGlycogen-storage disease type II (GSD II, acid maltase deficiency, Pompe's disease) is caused by defects in the lysosomal acid alpha-glucosidase (GAA) gene. Clinically, patients with the severe infantile form of GSD II have muscle weakness and cardiomyopathy eventually leading to death before the age of two years. Patients with the juvenile or the adult form of GSD II present with myopathy with a slow progression over several years or decades.
View Article and Find Full Text PDFBackground: Only 11 cases of beta mannosidase deficiency have been reported until now. We report a new case.
Case History: J was born at full term to consanguineous parents; her weight was 2,080 g and her height was 44 cm.
Metachromatic leukodystrophy (MLD), a lysosomal storage disease caused by the deficiency of arylsulfatase A (ASA), is inherited as an autosomal recessive trait, and its frequency is estimated to be 1 in 40,000 live births. Genomic DNA from 21 MLD patients (14 late-infantile and 7 juvenile cases) was amplified in four overlapping PCR fragments and tested by allele-specific oligonucleotide (ASO) for the two common mutations 459 + 1G-->A and P426L. These mutations were found in only 28.
View Article and Find Full Text PDFWe used the fluorescence-assisted mismatch analysis (FAMA) method to screen rapidly the alpha-galactosidase A gene in patients with Fabry disease in order to identify unknown mutations and help define genotype-phenotype correlations in this X-linked lysosomal storage disorder. Chemical cleavage at mismatches on heteroduplex DNA end-labeled with strand-specific fluorescent dyes, reliably detects sequence changes in DNA fragments of up to 1.5 kb and locates them precisely.
View Article and Find Full Text PDF