Publications by authors named "Podolin P"

The antioxidant natural product sulforaphane (SFN) is an oil with poor aqueous and thermal stability. Recent work with SFN has sought to optimize methods of formulation for oral and topical administration. Herein we report the design of new analogs of SFN with the goal of improving stability and drug-like properties.

View Article and Find Full Text PDF

Recent studies reveal that airway epithelial cells are critical pulmonary circadian pacemaker cells, mediating rhythmic inflammatory responses. Using mouse models, we now identify the rhythmic circadian repressor REV-ERBα as essential to the mechanism coupling the pulmonary clock to innate immunity, involving both myeloid and bronchial epithelial cells in temporal gating and determining amplitude of response to inhaled endotoxin. Dual mutation of REV-ERBα and its paralog REV-ERBβ in bronchial epithelia further augmented inflammatory responses and chemokine activation, but also initiated a basal inflammatory state, revealing a critical homeostatic role for REV-ERB proteins in the suppression of the endogenous proinflammatory mechanism in unchallenged cells.

View Article and Find Full Text PDF

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key regulator of oxidative stress and cellular repair and can be activated through inhibition of its cytoplasmic repressor, Kelch-like ECH-associated protein 1 (Keap1). Several small molecule disrupters of the Nrf2-Keap1 complex have recently been tested and/or approved for human therapeutic use but lack either potency or selectivity. The main goal of our work was to develop a potent, selective activator of NRF2 as protection against oxidative stress.

View Article and Find Full Text PDF

During lung inflation, airspace dimensions are affected nonlinearly by both alveolar expansion and recruitment, potentially confounding the identification of emphysematous lung by hyperpolarized helium-3 diffusion magnetic resonance imaging (HP MRI). This study aimed to characterize lung inflation over a broad range of inflation volume and pressure values in two different models of emphysema, as well as in normal lungs. Elastase-treated rats ( = 7) and healthy controls ( = 7) were imaged with HP MRI.

View Article and Find Full Text PDF

Inhalation of airborne toxicants such as cigarette smoke and ozone is a shared health risk among the world's populations. The use of toxic herbicides like paraquat (PQ) is restricted by many countries, yet in the developing world PQ has demonstrable ill effects. The present study examined changes in pulmonary function, mitochondrial DNA (mtDNA) integrity and markers of DNA repair induced by acute or repeated exposure of PQ to rats.

View Article and Find Full Text PDF

KEAP1 is the key regulator of the NRF2-mediated cytoprotective response, and increasingly recognized as a target for diseases involving oxidative stress. Pharmacological intervention has focused on molecules that decrease NRF2-ubiquitination through covalent modification of KEAP1 cysteine residues, but such electrophilic compounds lack selectivity and may be associated with off-target toxicity. We report here the first use of a fragment-based approach to directly target the KEAP1 Kelch-NRF2 interaction.

View Article and Find Full Text PDF

Background: Klotho is an 'anti-ageing' hormone and transmembrane protein; Klotho deficient mice develop a similar ageing phenotype to smokers including emphysema and muscle wasting. The objective of this study was to evaluate skeletal muscle and circulating Klotho protein in smokers and COPD patients and to relate Klotho levels to relevant skeletal muscle parameters. We sought to validate our findings by undertaking complimentary murine studies.

View Article and Find Full Text PDF

By congenic strain mapping using autoimmune NOD.C57BL/6J congenic mice, we demonstrated previously that the type 1 diabetes (T1D) protection associated with the insulin-dependent diabetes (Idd)10 locus on chromosome 3, originally identified by linkage analysis, was in fact due to three closely linked Idd loci: Idd10, Idd18.1, and Idd18.

View Article and Find Full Text PDF

Rodent lungs are routinely examined after intratracheal instillation (IT) of fixative. This study compares the histopathologic appearance of the lung after IT fixation with air inflation (AI) followed by immersion fixation. Lungs from mice chronically exposed to cigarette smoke were fixed either by IT or by AI.

View Article and Find Full Text PDF

Soluble epoxide hydrolase (sEH, EPHX2) metabolizes eicosanoid epoxides, including epoxyeicosatrienoic acids (EETs) to the corresponding dihydroxyeicosatrienoic acids (DHETs), and leukotoxin (LTX) to leukotoxin diol (LTX diol). EETs, endothelium-derived hyperpolarizing factors, exhibit potentially beneficial properties, including anti-inflammatory effects and vasodilation. A novel, potent, selective inhibitor of recombinant human, rat and mouse sEH, GSK2256294A, exhibited potent cell-based activity, a concentration-dependent inhibition of the conversion of 14,15-EET to 14,15-DHET in human, rat and mouse whole blood in vitro, and a dose-dependent increase in the LTX/LTX diol ratio in rat plasma following oral administration.

View Article and Find Full Text PDF

The role of T cells in chronic obstructive pulmonary disease (COPD) is not well understood. We have previously demonstrated that chronic cigarette smoke exposure can lead to the accumulation of CD4(+) and CD8(+) T cells in the alveolar airspaces in a mouse model of COPD, implicating these cells in disease pathogenesis. However, whether specific inhibition of T cell responses represents a therapeutic strategy has not been fully investigated.

View Article and Find Full Text PDF

Changes in lung function and structure were studied using hyperpolarized (3)He MRI in an elastase-induced murine model of emphysema. The combined analysis of the apparent diffusion coefficient (ADC) and fractional ventilation (R) were used to distinguish emphysematous changes and also to develop a model for classifying sections of the lung into diseased and normal. Twelve healthy male BALB/c mice (26 ± 2 g) were randomized into healthy and elastase-induced mice and studied ∼8-11 wk after model induction.

View Article and Find Full Text PDF

A series of azepanone inhibitors of cathepsin S is described. Selectivity over both cathepsin K and cathepsin L was achieved by varying the P2 substituent. Ultimately, a balanced potency and selectivity profile was achieved in compound 39 possessing a 1-methylcyclohexyl alanine at P2 and nicotinamide as the P' substituent.

View Article and Find Full Text PDF

Clinical utility of phosphodiesterase 4 (PDE4) inhibitors as anti-inflammatory agents has, to date, been limited by adverse effects including nausea and emesis, making accurate assessment of emetic versus anti-inflammatory potencies critical to the development of inhibitors with improved therapeutic indices. In the present study we determined the in vitro and in vivo anti-inflammatory potencies of the first-generation PDE4 inhibitor, rolipram, the second-generation inhibitors, roflumilast and cilomilast, and a novel third generation inhibitor, 1-ethyl-5-{5-[(4-methyl-1-piperazinyl)methyl]-1,3,4-oxadiazol-2-yl}-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (EPPA-1). The rank-order potency against lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha production by human peripheral blood mononuclear cells was roflumilast (IC(50) = 5 nM) > EPPA-1 (38) > rolipram (269) > cilomilast (389), and against LPS-induced pulmonary neutrophilia in the rat was EPPA-1 (D(50) = 0.

View Article and Find Full Text PDF

Recently, patients with tobacco smoke induced emphysema have been shown to exhibit classical signs of T cell mediated autoimmunity characterized by autoantibody production and Th1 type responses. As the recently described Th17 type subset has been found to play a role in the pathogenesis of a number of autoimmune diseases previously considered to be Th1 driven, we sought to examine whether a Th17 type response was associated with airspace enlargement in a murine model of emphysema. Six to eight months exposure of mice to inhalation of mainstream cigarette smoke led to progressive airspace enlargement as defined by morphometric analysis.

View Article and Find Full Text PDF

Members of the papain family of cysteine proteases (cathepsins) mediate late stage processing of MHC class II-bound invariant chain (Ii), enabling dissociation of Ii, and binding of antigenic peptide to class II molecules. Recognition of cell surface class II/Ag complexes by CD4(+) T cells then leads to T cell activation. Herein, we demonstrate that a pan-active cathepsin inhibitor, SB-331750, attenuated the processing of whole cell Ii p10 to CLIP by Raji cells, and DBA/1, SJL/J, and C57BL/6 splenocytes.

View Article and Find Full Text PDF

Demonstration that IkappaB kinase 2 (IKK-2) plays a pivotal role in the nuclear factor-kappaB-regulated production of proinflammatory molecules by stimuli such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 suggests that inhibition of IKK-2 may be beneficial in the treatment of rheumatoid arthritis. In the present study, we demonstrate that a novel, potent (IC(50) = 17.9 nM), and selective inhibitor of human IKK-2, 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1), inhibits lipopolysaccharide-induced human monocyte production of TNF-alpha, IL-6, and IL-8 with an IC(50) = 170 to 320 nM.

View Article and Find Full Text PDF

Much evidence implicates IL-8 as a major mediator of inflammation and joint destruction in rheumatoid arthritis. The effects of IL-8 and its related ligands are mediated via two receptors, CXCR1 and CXCR2. In the present study, we demonstrate that a potent and selective nonpeptide antagonist of human CXCR2 potently inhibits (125)I-labeled human IL-8 binding to, and human IL-8-induced calcium mobilization mediated by, rabbit CXCR2 (IC(50) = 40.

View Article and Find Full Text PDF

Tranilast (SB 252218) is a compound initially identified as an anti-atopic agent. Recently the compound has demonstrated clear beneficial effects in animal models of restenosis. Here we confirm tranilast has broad and profound effects on human monocytes, which could contribute to the vascular antifibrotic activity.

View Article and Find Full Text PDF

The insulin-dependent diabetes (Idd) gene, Idd3, has been localised to a 0.35 cM region of chromosome 3 containing the structural gene for the cytokine interleukin 2 (IL-2). While variation of the N-terminal amino acid sequence of IL-2 has been shown to correlate with Idd3 allelic variation, differences in induction of proliferation by IL-2 allotypes have not been detected.

View Article and Find Full Text PDF

Clenoliximab and keliximab are monkey/human chimeric monoclonal antibodies (mAbs) of the immunoglobulin G4 (IgG4) and IgG1 isotypes, respectively, that recognize the same epitope on human CD4. The two mAbs possess identical idiotypes and exhibit equal affinities for CD4. Upon administration of these mAbs to mice that express a human CD4 transgene, but not mouse CD4 (HuCD4/Tg mice), clenoliximab and keliximab exhibited similar kinetics of binding to CD4, and induced the same degree of CD4 modulation from the cell surface, although only keliximab mediated CD4+ T-cell depletion.

View Article and Find Full Text PDF

Multiple genes control the development of autoimmune diabetes both in humans and in the nonobese diabetic (NOD) strain of mouse. Previously, three insulin-dependent diabetes (Idd) genes, Idd3, Idd10, and Idd17, were localized to mouse Chromosome (Chr) 3. The B10- or B6-derived resistance alleles at Idd10 and Idd3 together provide the NOD mouse with nearly complete protection from diabetes.

View Article and Find Full Text PDF

The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is under the control of multiple insulin-dependent diabetes (Idd) genes. The Idd3 gene, originally defined as a broad peak of linkage on mouse chromosome 3, was subsequently identified as two genes, Idd3 and Idd10, separated by at least 20 cM. The resistance alleles of Idd3 and Idd10 individually confer only partial protection from diabetes but, in combination, result in profound resistance to disease due to an epistatic genetic interaction.

View Article and Find Full Text PDF

Currently, 16 loci that contribute to the development of IDDM in the NOD mouse have been mapped by linkage analysis. To fine map these loci, we used congenic mapping. Using this approach, we localized the Idd3 locus to a 0.

View Article and Find Full Text PDF

Development of diabetes in NOD mice is polygenic and dependent on both major histocompatibility complex (MHC)-linked and non-MHC-linked insulin-dependent diabetes (Idd) genes. In (F1 x NOD) backcross analyses using the B10.H-2g7 or B6.

View Article and Find Full Text PDF