Publications by authors named "Podmore A"

Subcutaneous injection of a low volume (<2 mL) high concentration (>100 mg/mL) formulation is an attractive administration strategy for monoclonal antibodies (mAbs) and other biopharmaceutical proteins. Using concentrated solutions may also be beneficial at various stages of bioprocessing. However, concentrating proteins by conventional techniques, such as ultrafiltration, can be time consuming and challenging.

View Article and Find Full Text PDF

Biopharmaceutical proteins are important drug therapies in the treatment of a range of diseases. Proteins, such as antibodies (Abs) and peptides, are prone to chemical and physical degradation, particularly at the high concentrations currently sought for subcutaneous injections, and so formulation conditions, including buffers and excipients, must be optimized to minimize such instabilities. Therefore, both the protein and small molecule content of biopharmaceutical formulations and their stability are critical to a treatment's success.

View Article and Find Full Text PDF

Proteins frequently exist as high-concentration mixtures, both in biological environments and increasingly in biopharmaceutical co-formulations. Such crowded conditions promote protein-protein interactions, potentially leading to formation of protein clusters, aggregation, and phase separation. Characterizing these interactions and processes in situ in high-concentration mixtures is challenging due to the complexity and heterogeneity of such systems.

View Article and Find Full Text PDF

Purpose: Anti-drug antibodies can impair the efficacy of therapeutic proteins and, in some circumstances, induce adverse health effects. Immunogenicity can be promoted by aggregation; here we examined the ability of recombinant mouse heat shock protein 70 (rmHSP70) - a common host cell impurity - to modulate the immune responses to aggregates of two therapeutic mAbs in mice.

Methods: Heat and shaking stress methods were used to generate aggregates in the sub-micron size range from two human mAbs, and immunogenicity assessed by intraperitoneal exposure in BALB/c mice.

View Article and Find Full Text PDF

Peptide therapeutics have the potential to self-associate, leading to aggregation and fibrillation. Noncovalent PEGylation offers a strategy to improve their physical stability; an understanding of the behavior of the resulting polymer/peptide complexes is, however, required. In this study, we have performed a set of experiments with additional mechanistic insight provided by in silico simulations to characterize the molecular organization of these complexes.

View Article and Find Full Text PDF

The combination of potent chemical moieties with biologically active proteins is key to some of today's most innovative therapeutic drugs. In order to obviate any chemical modification of the proteins, we present a novel and powerful strategy for the selective conjugation of recombinant protein domains with synthetically derived peptides via a cucurbit[8]uril host-guest chemistry approach.

View Article and Find Full Text PDF

We report a novel method for the extraction of alpha-1 antitrypsin (AAT) from plasma. This method uses an anion-exchange column and two metal chelate columns. The AAT is recovered in a 60% yield and a purity of over 90%.

View Article and Find Full Text PDF

Coagulation factor XI (FXI) plays an essential role in blood coagulation. A deficiency of FXI is an unusual hemorrhagic diathesis in that the bleeding tendency can be highly variable, ranging from severe deficiencies with no symptoms to mild and moderate deficiencies requiring multiple blood transfusions for hemorrhages. This variability in bleeding has been attributed to a number of factors including the presence of a novel form of FXI associated with platelets, which ameliorates the bleeding in some cases of FXI deficiency.

View Article and Find Full Text PDF

VanXY(C), a bifunctional enzyme from VanC-phenotype Enterococcus gallinarum BM4174 that catalyses D,D-peptidase and D,D-carboxypeptidase activities, was purified as the native protein, as a maltose-binding protein fusion and with an N-terminal tag containing six histidine residues. The kinetic parameters of His(6)-VanXY(C) were measured for a variety of precursors of peptidoglycan synthesis involved in resistance: for D-Ala-D-Ala, the K(m) was 3.6 mm and k(cat), 2.

View Article and Find Full Text PDF