Publications by authors named "Podlisny M"

Background: Previously we reported 1 μM synthetic human amyloid beta1-42 oligomers induced cofilin dephosphorylation (activation) and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus.

Results: Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human Aβ dimers and trimers (Aβd/t) induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human Aβ oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers.

View Article and Find Full Text PDF

Burgeoning evidence suggests that soluble oligomers of Abeta (amyloid beta-protein) are the earliest effectors of synaptic compromise in Alzheimer's disease. Whereas most other investigators have employed synthetic Abeta peptides, we have taken advantage of a beta-amyloid precursor protein-overexpressing cell line (referred to as 7PA2) that secretes sub-nanomolar levels of low-n oligomers of Abeta. These are composed of heterogeneous Abeta peptides that migrate on SDS/PAGE as dimers, trimers and tetramers.

View Article and Find Full Text PDF

Recent studies support the hypothesis that soluble oligomers of amyloid beta-peptide (Abeta) rather than mature amyloid fibrils are the earliest effectors of synaptic compromise in Alzheimer's disease. We took advantage of an amyloid precursor protein-overexpressing cell line that secretes SDS-stable Abeta oligomers to search for inhibitors of the pathobiological effects of natural human Abeta oligomers. Here, we identify small molecules that inhibit formation of soluble Abeta oligomers and thus abrogate their block of long-term potentiation (LTP).

View Article and Find Full Text PDF

A remarkable rise in life expectancy during the past century has made Alzheimer's disease (AD) the most common form of progressive cognitive failure in humans. Compositional analyses of the classical brain lesions, the senile (amyloid) plaques and neurofibrillary tangles, preceded and has guided the search for genetic alterations. Four genes have been unequivocally implicated in inherited forms of AD, and mutations or polymorphisms in these genes cause excessive cerebral accumulation of the amyloid beta-protein and subsequent neuronal and glial pathology in brain regions important for memory and cognition.

View Article and Find Full Text PDF

The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Abeta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Abeta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Abeta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M.

View Article and Find Full Text PDF

Excessive cerebral accumulation of the 42-residue amyloid beta-protein (Abeta) is an early and invariant step in the pathogenesis of Alzheimer's disease. Many studies have examined the cellular production of Abeta from its membrane-bound precursor, including the role of the presenilin proteins therein, but almost nothing is known about how Abeta is degraded and cleared following its secretion. We previously screened neuronal and nonneuronal cell lines for the production of proteases capable of degrading naturally secreted Abeta under biologically relevant conditions and concentrations.

View Article and Find Full Text PDF

Amyloid beta-proteins (A beta) are proteolytic fragments of the beta-amyloid precursor protein (beta APP) that are secreted by mammalian cells throughout life but also accumulate progressively as insoluble cerebral aggregates in Alzheimer's disease (AD). Because mounting evidence indicates that A beta aggregation and deposition are early, critical features of AD leading to neurotoxicity, many studies of A beta aggregation have been conducted using synthetic peptides under generally nonphysiological conditions and concentrations. We recently described the oligomerization of A beta peptides secreted by beta APP-expressing cells at low nanomolar (20-30 ng/mL) levels into sodium dodecyl sulfate- (SDS-) stable oligomers of 6-16 kDa.

View Article and Find Full Text PDF

Mutations in the presenilin 1 (PS1) and presenilin 2 (PS2) genes cause the most common and aggressive form of early onset familial Alzheimer's disease. To elucidate their pathogenic mechanism, wild-type (wt) or mutant (M146L, C410Y) PS1 and wt or mutant (M239V) PS2 genes were stably transfected into Chinese hamster ovary cells that overexpress the beta-amyloid precursor protein (APP). The identity of the 43-45-kDa PS1 holoproteins was confirmed by N-terminal radiosequencing.

View Article and Find Full Text PDF

Humans inheriting missense mutations in the presenilin (PS)1 and -2 genes undergo progressive cerebral deposition of the amyloid beta-protein at an early age and develop a clinically and pathologically severe form of familial Alzheimer's disease (FAD). Because PS1 mutations cause the most aggressive known form of AD, it is important to elucidate the structure and function of this multitransmembrane protein in the brain. Using a panel of region-specific PS antibodies, we characterized the presenilin polypeptides in mammalian tissues, including brains of normal, AD, and PS1-linked FAD subjects, and in transfected and nontransfected cell lines.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the deposition of extracellular senile plaques composed of amyloid beta-peptide (A beta). Whereas most cases of AD occur sporadically, about 10% of AD cases are inherited as a fully penetrant autosomal dominant trait. Mutations in the recently cloned Presenilin genes (PS-1 and PS-2) are by far the most common cause of early onset familial AD.

View Article and Find Full Text PDF

Mutations in a gene encoding a multitransmembrane protein, termed presenilin 1 (PS1), are causative in the majority of early-onset cases of AD. To determine the topology of PS1, we utilized two strategies: first, we tested whether putative transmembranes are sufficient to export a protease-sensitive substrate across a lipid bilayer; and second, we examined the binding of antibodies to specific PS1 epitopes in cultured cells selectively permeabilized with the pore-forming toxin, streptolysin-O. We document that the "loop," N-terminal, and C-terminal domains of PS1 are oriented toward the cytoplasm.

View Article and Find Full Text PDF

Recent reports have suggested that beta-amyloid (A beta) species of variable length C-termini are differentially deposited within early and late-stage plaques and the cerebrovasculature. Specifically, longer C-terminal length A beta 42/3 fragments (i.e.

View Article and Find Full Text PDF

The amyloid beta-protein (A beta) is a proteolytic fragment of the beta-amyloid precursor protein (beta APP). We previously reported the constitutive secretion of A beta peptides from a variety of cells expressing beta APP under normal culture conditions. These endogenously produced A beta peptides have heterogeneous N- and C-termini that vary as a function of beta APP missense mutations.

View Article and Find Full Text PDF

Filamentous aggregates of the 40-42-residue amyloid beta-protein (A beta) accumulate progressively in the limbic and cerebral cortex in Alzheimer's disease, where they are intimately associated with neuronal and glial cytopathology. Attempts to model this cytotoxicity in vitro using synthetic peptides have shown that monomeric A beta is relatively inert, whereas aggregated A beta reproducibly exerts a variety of neurotoxic effects. The processes that mediate the conversion of monomeric A beta into a toxic aggregated state are thus of great interest.

View Article and Find Full Text PDF

The deposition of amyloid beta (A beta) protein in the brain has been demonstrated immunocytochemically in the small Lemurian primate Microcebus murinus. Both meningocerebral vascular deposits and cortical parenchymal deposits occur. All eight aged (> 8 years old) Microcebus examined showed vascular amyloid deposits, whereas only four exhibited parenchymal plaques.

View Article and Find Full Text PDF

Previous studies have suggested that the amyloid beta-protein present in the brains of patients with Alzheimer's disease may be derived in part from peripheral blood. We determined that after IV injection of synthetic amyloid beta-protein 1-40 (A beta), labeled with radioactive 125I (I-A beta), radioactivity accumulated in the brains of mice by a nonsaturable mechanism. Radioactivity also accumulated in the brain after the i.

View Article and Find Full Text PDF

The cerebral deposition of amyloid beta protein (A beta P) is an early pathogenetic event in Alzheimer's disease (AD). Recent studies suggest both neurotoxic and neurotrophic effects of A beta P in vitro. Because progressive A beta P deposition and surrounding neuritic dystrophy occur spontaneously in primates, we evaluated the in vivo effects of synthetic A beta P in monkey cortex.

View Article and Find Full Text PDF

Deposition of extraneuronal fibrils that assemble from the 39-43 residue beta/A4 amyloid protein is one of the earliest histopathological features of Alzheimer's disease. We have used negative-stain electron microscopy, Fourier-transform infrared (FT-IR) spectroscopy, and fiber X-ray diffraction to examine the structure and properties of synthetic peptides corresponding to residues 1-40 of the beta/A4 protein of primate [Pm(1-40); human and monkey], rodent [Ro(1-40); with Arg5-->Gly, Tyr10-->Phe, and His13-->Arg], and hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D) [Du(1-40); with Glu22-->Gln]. As controls, we examined a reverse primate sequence [Pm*(40-1)] and an extensively substituted primate peptide [C(1-40); with Glu3-->Arg, Arg5-->Glu, Asp7-->Val, His13-->Lys, Lys16-->His, Val18-->Asp, Phe19-->Ser, Phe20-->Tyr, Ser26-->Pro, Ala30-->Val, Ile31-->Ala, Met35-->norLeu, Gly38-->Ile, Val39-->Ala, and Val40-->Gly].

View Article and Find Full Text PDF

Because progressive amyloid beta-protein (A beta P) deposition and surrounding neuritic dystrophy occur spontaneously in primates, we evaluated the in vivo effects of synthetic A beta P in monkey cortex. Experimental and control A beta P were stereotactically injected into multiple neocortical sites of adult rhesus monkeys in a vehicle of either artificial cerebrospinal fluid or acetonitrile. After 2 weeks or 3 months, injection sites were identified and characterized histologically and immunocytochemically.

View Article and Find Full Text PDF

Progressive cerebral deposition of the amyloid beta-protein (A beta P) occurs in Alzheimer's disease and during aging of certain mammals (eg, human, monkey, dog) but not others (eg, mouse, rat). The authors cloned and sequenced a full-length cDNA encoding the beta-protein precursor (beta APP) of cynomolgus monkey. The predicted amino acid sequence of the 695-residue protein is completely homologous to that of human.

View Article and Find Full Text PDF

Transforming growth factors beta (TGF beta) are multifunctional polypeptides that participate in regulation of growth, differentiation and function of many cell types. The mature TGF beta molecule is a 25 kDa protein composed of two 12.5 kDa monomers linked by disulfide bonds.

View Article and Find Full Text PDF

A approximately 40-residue fragment of the beta-amyloid precursor protein (APP) is progressively deposited in the extracellular spaces of brain and blood vessels in Alzheimer's disease (AD), Down's syndrome and aged normal subjects. Soluble, truncated forms of APP lacking the carboxyl terminus are normally secreted from cultured cells expressing this protein and are found in cerebrospinal fluid. Here, we report the detection of a similar soluble APP isoform in human plasma.

View Article and Find Full Text PDF

The amyloid deposited in Alzheimer's disease (AD) is composed primarily of a 39-42 residue polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). In previous studies, we and others identified full-length, membrane-associated forms of the beta APP and showed that these forms are processed into soluble derivatives that lack the carboxyl-terminus of the full-length forms. In this report, we demonstrate that the soluble approximately 125 and approximately 105 kDa forms of the beta APP found in human cerebrospinal fluid are specifically labeled by several different antisera to the beta AP.

View Article and Find Full Text PDF