Publications by authors named "Podkolodny N"

It is generally accepted that during the domestication of food plants, selection was focused on their productivity, the ease of their technological processing into food, and resistance to pathogens and environmental stressors. Besides, the palatability of plant foods and their health benefits could also be subjected to selection by humans in the past. Nonetheless, it is unclear whether in antiquity, aside from positive selection for beneficial properties of plants, humans simultaneously selected against such detrimental properties as allergenicity.

View Article and Find Full Text PDF

Variations in human genome (e.g., single nucleotide polymorphisms, SNPs) may be associated with hereditary diseases, their complications, comorbidities, and drug responses.

View Article and Find Full Text PDF

Two novel databases, GenSensor and ConSensor, have been developed. GenSensor accumulates information on the sensitivities of the prokaryotic genes to external stimuli and may facilitate designing of novel genosensors; ConSensor contains data about the structure and efficiency of the available genosensor plasmid constructs. Using these databases, candidate genes for the design of novel multiple functional genosensors were searched, and the Escherichia coli dps gene was chosen as the candidate.

View Article and Find Full Text PDF

The GeneNet system is designed for collection and analysis of the data on gene and metabolic networks, signal transduction pathways and kinetic characteristics of elementary processes. In the past 2 years, the GeneNet structure was considerably improved: (i) the current version of the database is now implemented using ORACLE9i; (ii) the capacities to describe the structure of the protein complexes and the interactions between the units are increased; (iii) two tables with kinetic constants and more detailed descriptions of certain reactions were added; and (iv) a module for kinetic modeling was supplemented. The current SRS release of the GeneNet database contains 37 graphical maps of gene networks, as well as descriptions of 1766 proteins, 1006 genes, 241 small molecules and 3254 relationships between gene network units, and 552 kinetic constants.

View Article and Find Full Text PDF

The review describes several modules of the GeneExpress integrated computer system concerning the regulation of gene expression in eukaryotes. Approaches to the presentation of experimental data in databases are considered. The employment of GeneExpress in computer analysis and modeling of the organization and function of genetic systems is illustrated with examples.

View Article and Find Full Text PDF
Article Synopsis
  • Gene networks play a crucial role in controlling cellular processes within organisms.
  • The study showcases the use of two methods—data accumulation in the GeneNet system and a generalized chemical kinetic method—to analyze these networks.
  • The technologies are specifically demonstrated through the gene network involved in the activation of macrophages, a type of immune cell.
View Article and Find Full Text PDF

The GeneNet database is designed for accumulation of information on gene networks. Original technology applied in GeneNet enables description of not only a gene network structure and functional relationships between components, but also metabolic and signal transduction pathways. Specialised software, GeneNet Viewer, automatically displays the graphical diagram of gene networks described in the database.

View Article and Find Full Text PDF

Transcription Regulatory Regions Database (TRRD) is an informational resource containing an integrated description of the gene transcription regulation. An entry of the database corresponds to a gene and contains the data on localization and functions of the transcription regulatory regions as well as gene expression patterns. TRRD contains only experimental data that are inputted into the database through annotating scientific publication.

View Article and Find Full Text PDF

A program for constructing nucleosome formation potential profile was applied for investigation of exons, introns, and repetitive sequences. The program is available at http://wwwmgs.bionet.

View Article and Find Full Text PDF

Motivation: A rapid growth in the number of genes with known sequences calls for developing automated tools for their classification and analysis. It became clear that nucleosome packaging of eukaryotic DNA is very important for gene functioning. Automated computer tools for characterization of nucleosome packaging density could be useful for studying of gene regulation and genome annotation.

View Article and Find Full Text PDF

ACTIVITY is a database on DNA/RNA site sequences with known activity magnitudes, measurement systems, sequence-activity relationships under fixed experimental conditions and procedures to adapt these relationships from one measurement system to another. This database deposits information on DNA/RNA affinities to proteins and cell nuclear extracts, cutting efficiencies, gene transcription activity, mRNA translation efficiencies, mutability and other biological activities of natural sites occurring within promoters, mRNA leaders, and other regulatory regions in pro- and eukaryotic genomes, their mutant forms and synthetic analogues. Since activity magnitudes are heavily system-dependent, the current version of ACTIVITY is supplemented by three novel sub-databases: (i) SYSTEM, measurement systems; (ii) KNOWLEDGE, sequence-activity relationships under fixed experimental conditions; and (iii) CROSS_TEST, procedures adapting a relationship from one measurement system to another.

View Article and Find Full Text PDF

Transcription Regulatory Regions Database (TRRD) has been developed for accumulation of experimental information on the structure-function features of regulatory regions of eukaryotic genes. Each entry in TRRD corresponds to a particular gene and contains a description of structure-function features of its regulatory regions (transcription factor binding sites, promoters, enhancers, silencers, etc.) and gene expression regulation patterns.

View Article and Find Full Text PDF

Motivation: The commonly accepted statistical mechanical theory is now multiply confirmed by using the weight matrix methods successfully recognizing DNA sites binding regulatory proteins in prokaryotes. Nevertheless, the recent evaluation of weight matrix methods application for transcription factor binding site recognition in eukaryotes has unexpectedly revealed that the matrix scores correlate better to each other than to the activity of DNA sites interacting with proteins. This observation points out that molecular mechanisms of DNA/protein recognition are more complicated in eukaryotes than in prokaryotes.

View Article and Find Full Text PDF

Motivation: The goal of the work was to develop a WWW-oriented computer system providing a maximal integration of informational and software resources on the regulation of gene expression and navigation through them. Rapid growth of the variety and volume of information accumulated in the databases on regulation of gene expression necessarily requires the development of computer systems for automated discovery of the knowledge that can be further used for analysis of regulatory genomic sequences.

Results: The GeneExpress system developed includes the following major informational and software modules: (1) Transcription Regulation (TRRD) module, which contains the databases on transcription regulatory regions of eukaryotic genes and TRRD Viewer for data visualization; (2) Site Activity Prediction (ACTIVITY), the module for analysis of functional site activity and its prediction; (3) Site Recognition module, which comprises (a) B-DNA-VIDEO system for detecting the conformational and physicochemical properties of DNA sites significant for their recognition, (b) Consensus and Weight Matrices (ConsFrec) and (c) Transcription Factor Binding Sites Recognition (TFBSR) systems for detecting conservative contextual regions of functional sites and their recognition; (4) Gene Networks (GeneNet), which contains an object-oriented database accumulating the data on gene networks and signal transduction pathways, and the Java-based Viewer for exploration and visualization of the GeneNet information; (5) mRNA Translation (Leader mRNA), designed to analyze structural and contextual properties of mRNA 5'-untranslated regions (5'-UTRs) and predict their translation efficiency; (6) other program modules designed to study the structure-function organization of regulatory genomic sequences and regulatory proteins.

View Article and Find Full Text PDF

The Transcription Regulatory Regions Database (TRRD) is a curated database designed for accumulation of experimental data on extended regulatory regions of eukaryotic genes, the regulatory elements they contain, i.e., transcription factor binding sites, promoters, enhancers, silencers, etc.

View Article and Find Full Text PDF

GeneExpress system has been designed to integrate description, analysis, and recognition of eukaryotic regulatory sequences. The system includes 5 basic units: (1) GeneNet contains an object-oriented database for accumulation of data on gene networks and signal transduction pathways and a Java-based viewer that allows an exploration and visualization of the GeneNet information; (2) Transcription Regulation combines the database on transcription regulatory regions of eukaryotic genes (TRRD) and TRRD Viewer; (3) Transcription Factor Binding Site Recognition contains a compilation of transcription factor binding sites (TFBSC) and programs for their analysis and recognition; (4) mRNA Translation is designed for analysis of structural and contextual features of mRNA 5'UTRs and prediction of their translation efficiency; and (5) ACTIVITY is the module for analysis and site activity prediction of a given nucleotide sequence. Integration of the databases in the GeneExpress is based on the Sequence Retrieval System (SRS) created in the European Bioinformatics Institute.

View Article and Find Full Text PDF

TRANSFAC, TRRD (Transcription Regulatory Region Database) and COMPEL are databases which store information about transcriptional regulation in eukaryotic cells. The three databases provide distinct views on the components involved in transcription: transcription factors and their binding sites and binding profiles (TRANSFAC), the regulatory hierarchy of whole genes (TRRD), and the structural and functional properties of composite elements (COMPEL). The quantitative and qualitative changes of all three databases and connected programs are described.

View Article and Find Full Text PDF