LAG3 is an inhibitory receptor that is highly expressed on exhausted T cells. Although LAG3-targeting immunotherapeutics are currently in clinical trials, how LAG3 inhibits T cell function remains unclear. Here, we show that LAG3 moved to the immunological synapse and associated with the T cell receptor (TCR)-CD3 complex in CD4 and CD8 T cells, in the absence of binding to major histocompatibility complex class II-its canonical ligand.
View Article and Find Full Text PDFIntroduction: It has been reported that low-molecular-weight hyaluronic acid (LMWHA) exhibits a potentially beneficial effect on cancer therapy through targeting of CD44 receptors on tumor cell surfaces. However, its applicability towards tumor detection is still unclear. In this regard, LMWHA-conjugated iron (FeO) nanoparticles (LMWHA-IONPs) were prepared in order to evaluate its application for enhancing the T2* weighted MRI imaging sensitivity for tumor detection.
View Article and Find Full Text PDFCells adjust to nutrient fluctuations to restore metabolic homeostasis. The mechanistic target of rapamycin (mTOR) complex 2 responds to nutrient levels and growth signals to phosphorylate protein kinases belonging to the AGC (Protein Kinases A,G,C) family such as Akt and PKC. Phosphorylation of these AGC kinases at their conserved hydrophobic motif (HM) site by mTORC2 enhances their activation and mediates the functions of mTORC2 in cell growth and metabolism.
View Article and Find Full Text PDFLow-molecular-weight hyaluronic acid (LMWHA) was integrated with superparamagnetic FeO nanoparticles (FeO NPs). The size distribution, zeta potential, viscosity, thermogravimetric and paramagnetic properties of the LMWHA-FeO NPs were systematically examined. For cellular experiments, MCF7 breast cancer cell line was carried out.
View Article and Find Full Text PDFHighly proliferating cells are particularly dependent on glucose and glutamine for bioenergetics and macromolecule biosynthesis. The signals that respond to nutrient fluctuations to maintain metabolic homeostasis remain poorly understood. Here, we found that mTORC2 is activated by nutrient deprivation due to decreasing glutamine catabolites.
View Article and Find Full Text PDFAn efficient immune response relies on the presence of T cells expressing a functional TCR. Whereas the mechanisms generating TCR diversity for antigenic recognition are well defined, what controls its surface expression is less known. In this study, we found that deletion of the mammalian target of rapamycin complex (mTORC) 2 component rictor at early stages of T cell development led to aberrant maturation and increased proteasomal degradation of nascent TCRs.
View Article and Find Full Text PDFTechnological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF) disk drives stem from a hinge's skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs) is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA) unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction.
View Article and Find Full Text PDFDendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation.
View Article and Find Full Text PDFNijmegen breakage syndrome (NBS) is a chromosomal instability syndrome associated with cancer predisposition, radiosensitivity, microcephaly, and growth retardation. The NBS gene product, NBS1 (p95) or nibrin, is a part of the hMre11 complex, a central player associated with double strand break repair. We previously demonstrated that c-Myc directly activates NBS1 expression.
View Article and Find Full Text PDFThe c-myc proto-oncogene encodes a ubiquitous transcription factor involved in the control of cell growth and differentiation and implicated in inducing tumorigenesis. Understanding the function of c-Myc and its role in cancer depends upon the identification of c-Myc target genes. Heat shock protein 90 (HSP90) is involved in the folding of proteins such as signal transduction molecules (Src, Raf1, cdk4) and steroid receptors and in enhancing the activity of telomerase and nitric-oxide synthase.
View Article and Find Full Text PDF