Publications by authors named "Po-Ju Ke"

Microbes in the dark oceans are a key determinant of remineralization of sinking carbon particles. However, most marine ecosystem models overlook how microbes aggregate on particles and the microscale interactions between particle-associated microbes, making it difficult to obtain mechanistic insights on their vertical power-law decay pattern. Here, we present a spatial population model where the attachment and detachment processes of bacterial cells depend on local density of particle-associated bacteria.

View Article and Find Full Text PDF

The ability for microbes to enter dormant states is adaptive under resource fluctuations and has been linked to the maintenance of diversity. Nevertheless, the mechanism by which microbial dormancy gives rise to the density-dependent feedbacks required for stable coexistence under resource fluctuations is not well understood. Via analysis of consumer-resource models, we show that the stable coexistence of dormancy and non-dormancy strategists is a consequence of the former benefiting more from resource fluctuations while simultaneously reducing overall resource variability, which sets up the requisite negative frequency dependence.

View Article and Find Full Text PDF

AbstractA scientific understanding of the biological world arises when ideas about how nature works are formalized, tested, refined, and then tested again. Although the benefits of feedback between theoretical and empirical research are widely acknowledged by ecologists, this link is still not as strong as it could be in ecological research. This is in part because theory, particularly when expressed mathematically, can feel inaccessible to empiricists who may have little formal training in advanced math.

View Article and Find Full Text PDF

Ecological selection is a major driver of community assembly. Selection is classified as stabilizing when species with intermediate trait values gain the highest reproductive success, whereas selection is considered directional when fitness is highest for species with extreme trait values. Previous studies have investigated the effects of different selection types on trait distribution, but the effects of selection on species diversity have remained unclear.

View Article and Find Full Text PDF

Reconstructing interactions from observational data is a critical need for investigating natural biological networks, wherein network dimensionality is usually high. However, these pose a challenge to existing methods that can quantify only small interaction networks. Here, we proposed a novel approach to reconstruct high-dimensional interaction Jacobian networks using empirical time series without specific model assumptions.

View Article and Find Full Text PDF

AbstractSoil microbes can influence plant competitive outcomes by stabilizing plant community dynamics or mediating plant competitive hierarchies. Which effect dominates depends on whether microbial effects can extend beyond the focal conditioning individual. While it is well known that microbial effects can extend to other individuals through space, we lack an explicit theoretical understanding of the factors that regulate their spread to other individuals in subsequent generations.

View Article and Find Full Text PDF

Understanding the mechanisms underlying spatial variability of exploited fish is critical for the sustainable management of fish stocks. Empirical studies suggest that size-selective fishing can elevate fish population spatial variability (i.e.

View Article and Find Full Text PDF

Plant-soil feedback (PSF) may change in strength over the life of plant individuals as plants continue to modify the soil microbial community. However, the temporal variation in PSF is rarely quantified and its impacts on plant communities remain unknown. Using a chronosequence reconstructed from annual aerial photographs of a coastal dune ecosystem, we characterized > 20-yr changes in soil microbial communities associated with individuals of the four dominant perennial species, one legume and three nonlegume.

View Article and Find Full Text PDF

The original paper was published without unique DOIs for GBIF occurrence downloads. These have now been inserted as references 70-76, and the error has been corrected in the PDF and HTML versions of the article.

View Article and Find Full Text PDF

A foundational paradigm in biological and Earth sciences is that our planet is divided into distinct ecoregions and biomes demarking unique assemblages of species. This notion has profoundly influenced scientific research and environmental policy. Given recent advances in technology and data availability, however, we are now poised to ask whether ecoregions meaningfully delimit biological communities.

View Article and Find Full Text PDF

Priority effects are commonly used to describe a broad suite of phenomena capturing the influence of species arrival order on the diversity, composition and function of ecological communities. Several studies have suggested reframing priority effects around the stabilizing and equalizing concepts of coexistence theory. We show that the only compatible priority effects are those characterized by positive frequency-dependence, irrespective of whether they emerge in equilibrium or non-equilibrium systems.

View Article and Find Full Text PDF

Understanding the origins and maintenance of biodiversity remains one of biology's grand challenges. From theory and observational evidence, we know that variability in environmental conditions through time is likely critical to the coexistence of competing species. Nevertheless, experimental tests of fluctuation-driven coexistence are rare and have typically focused on just one of two potential mechanisms, the temporal storage effect, to the neglect of the theoretically equally plausible mechanism known as relative nonlinearity of competition.

View Article and Find Full Text PDF

Plants affect microbial communities and abiotic properties of nearby soils, which in turn influence plant growth and interspecific interaction, forming a plant-soil feedback (PSF). PSF is a key determinant influencing plant population dynamics, community structure, and ecosystem functions. Despite accumulating evidence for the importance of PSF and development of specific PSF models, different models are not yet fully integrated.

View Article and Find Full Text PDF

Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant-microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits.

View Article and Find Full Text PDF