Publications by authors named "Po-Hsin Shih"

The magic-angle twisted bilayer graphene (MATBLG) has been demonstrated to exhibit exotic physical properties due to the special flat bands. However, exploiting the engineering of such properties by external fields is still in it infancy. Here we show that MATBLG under an external magnetic field presents a distinctive magnetoplasmon dispersion, which can be significantly modified by transferred momentum and charge doping.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how manipulating edge defects in armchair graphene nanoribbons (AGNRs) affects their optical properties using a tight-binding model and absorption spectral function.
  • Modifications to the edge states lead to diverse electronic structures, altering the band gap and creating unique excitation peaks in optical-absorption spectra, influenced by the type and periodicity of edge extensions.
  • The research uncovers a specific rule governing the impact of edge defects on electronic and optical properties, highlighting a potential pathway for advancements in nano-optical, plasmonic, and optoelectronic technologies.
View Article and Find Full Text PDF

The effect of edge modification of armchair graphene nanoribbons (AGNRs) on the collective excitations are theoretically investigated. The tight-binding method is employed in conjunction with the dielectric function. Unconventional plasmon modes and their association with the flat bands of the specially designed AGNRs are thoroughly studied.

View Article and Find Full Text PDF

In this paper, by introducing a generalized quantum-kinetic model which is coupled self-consistently with Maxwell and Boltzmann transport equations, we elucidate the significance of using input from first-principles band-structure computations for an accurate description of ultra-fast dephasing and scattering dynamics of electrons in graphene. In particular, we start with the tight-binding model (TBM) for calculating band structures of solid covalent crystals based on localized Wannier orbital functions, where the employed hopping integrals in TBM have been parameterized for various covalent bonds. After that, the general TBM formalism has been applied to graphene to obtain both band structures and wave functions of electrons beyond the regime of effective low-energy theory.

View Article and Find Full Text PDF

The influences of an external electric field with uniform or modulated potential on the electronic and optical properties of armchair graphene nanoribbons (GNRs) are explored using the multi-orbital tight-binding Hamiltonian. The interplay between an electric field and interaction between (,,,) orbitals remarkably enriches the main features of band structures and absorption spectra. The applied electric field can notably alter the energy dispersions ofandbands, leading to the deformation of band-edge states, open and close of a band gap, and modification of the Fermi energy.

View Article and Find Full Text PDF

The rich magneto-electronic properties of AA-bottom-top (bt) bilayer silicene are investigated using a generalized tight-binding model. The electronic structure exhibits two pairs of oscillatory energy bands for which the lowest conduction and highest valence states of the low-lying pair are shifted away from the K point. The quantized Landau levels (LLs) are classified into various separated groups by the localization behaviors of their spatial distributions.

View Article and Find Full Text PDF

The rich optical properties of AA-bottom-top (bt) bilayer silicene (BS) in a uniform perpendicular electric field (E) are investigated through the use of the tight-binding model. The distinctive multivalley band structure presents a semimetallic behavior but with a sizeable intraband gap. The main features of the energy dispersion appear in the optical absorption spectrum through transitions between band-edge states obeying specific selection rules.

View Article and Find Full Text PDF

We conduct a comprehensive investigation of the effect of an applied electric field on the optical and magneto-optical absorption spectra for AB-bt (bottom-top) bilayer silicene. The generalized tight-binding model in conjunction with the Kubo formula is efficiently employed in the numerical calculations. The electronic and optical properties are greatly diversified by the buckled lattice structure, stacking configuration, intralayer and interlayer hopping interactions, spin-orbital couplings, as well as the electric and magnetic fields ([Formula: see text] [Formula: see text] [Formula: see text]).

View Article and Find Full Text PDF

The quantum Hall effects in sliding bilayer graphene and a AAB-stacked trilayer system are investigated using the Kubo formula and a generalized tight-binding model. The various stacking configurations can greatly diversify the magnetic quantization and thus create rich and unique transport properties. The quantum conductivities are very sensitive to the Fermi energy and magnetic-field strength.

View Article and Find Full Text PDF

The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams.

View Article and Find Full Text PDF

A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsafhbvu6odo4sh678b76arndrph069cm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once