Publications by authors named "Po Yi Lam"

Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions.

View Article and Find Full Text PDF

Pregnant women and their fetuses are often excluded from clinical trials due to missing drug-related pre-clinical trial information at the human feto-maternal interface (FMi). The two interfaces-placenta/decidua and fetal membranes/decidua are gatekeepers of drug transport; however, testing their functions is impractical during pregnancy. Limitations of current / models have hampered drug development and testing during pregnancy.

View Article and Find Full Text PDF

Three-dimensional (3D) cell culture models have been extensively utilized in various mechanistic studies as well as for drug development studies as superior in vitro platforms than conventional two-dimensional (2D) cell culture models. This is especially the case in cancer biology, where 3D cancer models, such as spheroids or organoids, have been utilized extensively to understand the mechanisms of cancer development. Recently, many sophisticated 3D models such as organ-on-a-chip models are emerging as advanced in vitro models that can more accurately mimic the in vivo tissue functions.

View Article and Find Full Text PDF

Fetal membrane(amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions.

View Article and Find Full Text PDF

The effects of endocrine-disrupting compounds (EDCs) on the placenta, a critical gestational organ for xenobiotic protection, are well reported; however, models to determine the role of EDCs in placental disruption are limited. An advanced 2nd-trimester human placenta organ-on-chip model (2TPLA-OOC) was developed and validated, with six representative cells of the maternal and the fetal interface interconnected with microchannels. Various EDCs (150 ng mL each of bisphenol A, bisphenol S, and polybrominated diphenyl ethers-47 and -99) were gradually propagated across the chip for 72 hours, and their various effects were determined.

View Article and Find Full Text PDF

Oxidative stress (OS) and inflammation arising from cellular derangements at the fetal membrane-decidual interface (feto-maternal interface [FMi]) is a major antecedent to preterm birth (PTB). However, it is impractical to study OS-associated FMi disease state during human pregnancy, and thus it is difficult to develop strategies to reduce the incidences of PTB. A microfluidic organ-on-chip model (FMi-OOC) that mimics the in vivo structure and functions of FMi in vitro was developed to address this challenge.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Po Yi Lam"

  • - Po Yi Lam's research focuses on the development of advanced organ-on-a-chip models to simulate human pregnancy conditions, particularly examining the interactions at the fetal-maternal interface and the impact of environmental factors such as fluid dynamics and endocrine disruptors on fetal membranes and placental functions.
  • - Recent findings reveal that subtle oscillations in amniotic fluid affect amnion epithelial cell health, potentially leading to pathologic changes that could compromise fetal membrane functionality, highlighting the importance of dynamic fluid conditions in fetal development.
  • - Lam's work also investigates the effects of oxidative stress and endocrine-disrupting compounds using innovative microfluidic models, providing vital insights for drug testing and understanding pregnancy-related complications such as preterm birth and placental dysfunction.

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsgfb2cu3lepufu0pqa9gu1l9gnok7anb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once