Publications by authors named "Po Dong"

Reducing the form factor while retaining the radiation hardness and performance matrix is the goal of avionics. While a compromise between a transistor's size and its radiation hardness has reached consensus in microelectronics, the size-performance balance for their optical counterparts has not been quested but eventually will limit the spaceborne photonic instruments' capacity to weight ratio. Here, we performed space experiments of photonic integrated circuits (PICs), revealing the critical roles of energetic charged particles.

View Article and Find Full Text PDF

We demonstrate a 4,294,967,296-quadrature amplitude modulation (QAM) based Y-00 quantum stream cipher system carrying a 160-Gb/s 16-QAM signal transmitted over 320-km SSMF. The ultra-dense QAM cipher template is realized by an integrated two-segment silicon photonics I/Q modulator.

View Article and Find Full Text PDF

We demonstrate a hybrid silicon tunable laser with wide tunability and rapid switching speed for applications in sensing and optical networks. By implementing an optimized carrier injection phase shifter design, the filters of the silicon laser cavity may be efficiently controlled, enabling both fine and broad wavelength tuning across a 56 nm range, in addition to a rapid 10 ns switching time. The laser emits up to 10 dBm output power, and the linewidth is near 200 kHz.

View Article and Find Full Text PDF
Article Synopsis
  • Graphene's unique properties, including its atomic layer thickness and semi-metallic behavior, can enhance integrated photonic devices by offering Fermi-level tunability for electro-optic modulation.
  • The research explores two main device architectures: one using graphene directly in contact with silicon for fast carrier injection, providing ultrafast modulation speeds, and another integrating graphene with lithium niobate to improve performance with minimal losses.
  • The results indicate promising enhancements in modulation speed (up to 67 GHz) and efficiency (improved electro-optic field overlap coefficient with lower voltage requirements).
View Article and Find Full Text PDF

Electro-magnetic (EM) mixers are fundamental building blocks in communication systems. They are used in frequency/wavelength filters, interferometric modulators, amplitude-phase receivers, to name a few. Traditional EM mixers have two or more input ports and work only for co-polarized signal and local-oscillator (LO) incident on its inputs.

View Article and Find Full Text PDF

We propose a novel approach to demonstrate simultaneous multi-wavelength locking during temperature changes in a silicon photonic polarization insensitive microring-based wavelength division multiplexing (WDM) receiver. The DC component of a single monitoring photodetector at the through port of the microring filter array is exploited as a feedback signal with no additional power consumption. This feedback signal is used in control circuitry to properly tune the microring filters using ohmic heating, thus creating a feedback loop for thermal adaptation.

View Article and Find Full Text PDF

A microring modulator array coupled to a common bus waveguide can be used to construct low power, compact and flexible wavelength-division-multiplexing (WDM) transmitters. However, due to extremely small working bandwidths of the rings, it is challenging to find the right resonant wavelength setting and locking the resonance to an external laser. In the paper, we propose a novel technique enabling simultaneous wavelength locking of a microring modulator array with a single monitor, together with automatically optimizing the wavelength setting.

View Article and Find Full Text PDF

We demonstrate a silicon Mach-Zehnder modulator with a coplanar waveguide transmission-line electrode structure using a meandering optical waveguide and alternating-side PN junction loading of the electrodes, which helps suppress the signal distortion caused by the parasitic slot-line mode and improves the electro-optic (EO) bandwidth. The silicon MZM exhibits a π-phase-shift voltage (V) of 4.5 V with an EO 3 dB bandwidth of ∼20  GHz for a 5 mm long phase shifter.

View Article and Find Full Text PDF

Recently, there is increasing interest in utilizing Stokes vector receiver, which is a direct-detection technique with the capability to digitally track the polarization changes in fibers and decode information in multiple dimensions. Here, we report a monolithically integrated silicon photonic Stokes vector receiver, which consists of one polarization beam splitter, two polarization rotators, one 90-degree optical hybrid, and six germanium photodetectors. Paired with a silicon in-phase/quadrature modulator incorporating a power-tunable carrier in the orthogonal polarization, transmission at 128-Gb/s over 100-km fiber is achieved with direct detection.

View Article and Find Full Text PDF

In coherent optical transmission, traveling-wave Mach-Zehnder modulators are commonly used to generate various advanced formats where the modulators are biased at the minimum transmission point. Here, we report that an optical isolation effect with lower backward transmission occurs under this condition. This concept is successfully demonstrated to achieve ∼7  dB isolation over a 90-nm wavelength span under binary phase-shift keying modulation using a commercial lithium niobate modulator.

View Article and Find Full Text PDF

We introduce the concept of dual-illuminated photodetectors for high-power applications. Illuminating the photodetector on both sides doubles the number of optical channels, boosting DC and RF power handling capability. This concept is demonstrated utilizing multiple-stage dual-illuminated traveling wave photodetector circuits in silicon photonics, showing a maximum DC photocurrent of 112 mA and a 3-dB bandwidth of 40 GHz at 0.

View Article and Find Full Text PDF

On-chip optical isolators not requiring the use of magneto-optical materials has become a long-standing challenge in integrated optics. Here, we demonstrate that a traditional travelling-wave modulator can effectively function as an optical isolator, when driven under a prescribed modulation condition. By using an off-shelve lithium niobate modulator, we achieve more than 12.

View Article and Find Full Text PDF

Integrated semiconductor lasers on silicon are one of the most crucial devices to enable low-cost silicon photonic integrated circuits for high-bandwidth optic communications and interconnects. While optical amplifiers and lasers are typically realized in III-V waveguide structures, it is beneficial to have an integration approach which allows flexible and efficient coupling of light between III-V gain media and silicon waveguides. In this paper, we propose and demonstrate a novel fabrication technique and associated transition structure to realize integrated lasers without the constraints of other critical processing parameters such as the starting silicon layer thicknesses.

View Article and Find Full Text PDF

A silicon Mach-Zehnder Interferometer (MZI) optical modulator with a shield coplanar waveguide (CPW) transmission line electrode design was demonstrated. This shield-CPW electrode suppresses the signal distortion caused by the parasitic slot-line (SL) mode and improves the electrical bandwidth and the electro-optical (EO) bandwidth. With the shield-CPW electrodes and 5.

View Article and Find Full Text PDF

We demonstrate, by coherent driving two uncoupled rings in same direction, that the effective photon circulating time in the dual-ring modulator is reduced, with increased modulation quality. The inter-ring detuning-dependent photon dynamics, Q factor, extinction ratio, and optical modulation amplitude of two cascaded silicon ring resonators are studied and compared with that of a single-ring modulator. Experimentally measured eye diagrams, together with coupled mode theory simulations, demonstrate the enhancement of the dual-ring configuration at 20 Gbps with a Q∼20,000.

View Article and Find Full Text PDF

We present a monolithic polarization diversity coherent receiver by employing 120-degree optical hybrids on a silicon photonic integrated circuit (PIC). This PIC monolithically integrates silicon inverse tapers for fiber coupling, silicon polarization splitters, germanium high-speed photo detectors, and 120-degree optical hybrids based on 3x3 multimode interferometers (MMI). We demonstrate that 112-Gb/s polarization-division-multiplexed quadrature phase-shift keyed signals are detected in the wavelength range of 1530-1580 nm with comparable performance to commercial receivers.

View Article and Find Full Text PDF

We present a monolithic dual-polarization quadrature phase-shift keying (QPSK) modulator based on a silicon photonic integrated circuit (PIC). This PIC consists of four high-speed silicon modulators, a polarization rotator, and a polarization beam combiner. A 112-Gb/s polarization-division-multiplexed (PDM) QPSK modulation is successfully demonstrated.

View Article and Find Full Text PDF

We report the first successful demonstration of quadrature phase-shift keying (QPSK) modulation using two nested silicon Mach-Zehnder modulators. 50-Gb/s QPSK signal is generated with only 2.7-dB optical signal-to-noise ratio penalties from the theoretical limit at a bit-error ratio of 10(-3).

View Article and Find Full Text PDF

Advanced optical modulation formats are a key technology to increase the capacity of optical communication networks. Mach-Zehnder modulators are typically used to generate various modulation formats. Here, we report the first experimental demonstration of quadrature phase-shift keying (QPSK) modulation using compact microring modulators.

View Article and Find Full Text PDF

We demonstrate a single-drive push-pull silicon Mach-Zehnder modulator (MZM) with a π-phase-shift voltage of 3.1 V and speed up to 30 Gb/s. The on-chip insertion loss is 9 dB due to the use of a 6 mm-long phase shifter.

View Article and Find Full Text PDF

We demonstrate a chip containing ten low-chirp silicon modulators, each operating at 25 Gbps, multiplexed by a SiN arrayed-waveguide grating with 100-GHz spacing, showing the potential for 250 Gbps aggregated capacity on a 5×8 mm(2) footprint.

View Article and Find Full Text PDF

We present two effective approaches to improve the responsivity of high speed waveguide-based Ge photodetectors integrated on a 0.25 μm silicon-on-insulator (SOI) platform. The main cause of poor responsivity is identified as metal absorption from the top contact to Ge.

View Article and Find Full Text PDF

We present the design and fabrication of a waveguide-based Ge electro-absorption (EA) modulator integrated with a 3 µm silicon-on-isolator (SOI) waveguide. The proposed Ge EA modulator employs a butt-coupled horizontally-oriented p-i-n structure. The optical design achieves a low-loss transition from Ge to Si waveguides.

View Article and Find Full Text PDF

We demonstrate a compact waveguide-based high-speed Ge electro-absorption (EA) modulator integrated with a single mode 3 µm silicon-on-isolator (SOI) waveguide. The Ge EA modulator is based on a horizontally-oriented p-i-n structure butt-coupled with a deep-etched silicon waveguide, which transitions adiabatically to a shallow-etched single mode large core SOI waveguide. The demonstrated device has a compact active region of 1.

View Article and Find Full Text PDF