Publications by authors named "Pluer W"

Nutrient and soil loss from agricultural areas impairs surface water quality globally. In the Great Lakes region, increases in the frequency and magnitude of harmful and nuisance algal blooms in freshwater lakes have been linked to elevated phosphorus (P) losses from agricultural fields, some of which are transported via tile drainage. This study examined whether concentrations and loads of P fractions, total suspended sediments (TSS), nitrate (NO ), and ammonium (NH ) in tile drainage in a clay soil differed between a continuous no-till system combining cover crops and surface broadcast fertilizer (no-till cover crop [NTCC]), and a more conventional tillage system with shallow tillage, fertilizer incorporation and limited use of cover crops (conventional conservation-till, CT).

View Article and Find Full Text PDF

The eutrophication of freshwater systems is a pervasive issue in North America and elsewhere, which has been linked to elevated phosphorus (P) loading from watersheds. Most excess P is thought to originate from non-point agricultural sources, and less attention has been given to small rural point sources, such as bunker silos on livestock farms. Sophisticated management practices are rarely used to attenuate nutrients from bunker silo effluent, leaving simple vegetated buffer strips or riparian zones to protect surface water; however, the efficacy of these systems or larger constructed treatment systems is unclear.

View Article and Find Full Text PDF

Phosphorus (P) loss in agricultural discharge has typically been associated with surface runoff; however, tile drains have been identified as a key P pathway due to preferential transport. Identifying when and where these pathways are active may establish high-risk periods and regions that are vulnerable for P loss. A synthesis of high-frequency, runoff data from eight cropped fields across the Great Lakes region of North America over a 3-yr period showed that both surface and tile flow occurred year-round, although tile flow occurred more frequently.

View Article and Find Full Text PDF

Agricultural P losses are a global economic and water quality concern. Much of the current understanding of P dynamics in agricultural systems has been obtained from rainfall-driven runoff, and less is known about cold-season processes. An improved understanding of the magnitude, form, and transport flow paths of P losses from agricultural croplands year round, and the climatic drivers of these processes, is needed to prioritize and evaluate appropriate best management practices (BMPs) to protect soil-water quality in cold regions.

View Article and Find Full Text PDF

Denitrifying bioreactors are increasingly being used for nitrate removal from agricultural drainage water. Filled with carbon substrates, often woodchips, denitrifying bioreactors provide a favorable anaerobic environment for denitrification. Despite performing well in loess soils in the Midwestern United States, field bioreactors have not yet been evaluated in shallow soils over glacial till that are characteristic for the Northeastern United States.

View Article and Find Full Text PDF

Denitrifying bioreactors have been suggested as effective best management practices to reduce nitrate and nitrite (NO) in large-scale agricultural tile drainage. This study combines experiments in flow-through laboratory reactors with in situ continuous monitoring and experiments in a pair of field reactors to determine the effectiveness of reactors for small-scale agriculture in New York. It also compares the use of a typical woodchip media with a woodchip and biochar mixture.

View Article and Find Full Text PDF