Publications by authors named "Plow E"

Ipsilateral motor evoked potentials (iMEPs) are believed to represent cortically evoked excitability of uncrossed brainstem-mediated pathways. In the event of extensive injury to (crossed) corticospinal pathways, which can occur following a stroke, uncrossed ipsilateral pathways may serve as an alternate resource to support the recovery of the paretic limb. However, iMEPs, even in neurally intact people, can be small, infrequent, and noisy, so discerning them in stroke survivors is very challenging.

View Article and Find Full Text PDF

Kindlin-2 is a cytoskeletal adapter protein that is present in many different cell types. By virtue of its interaction with multiple binding partners, Kindlin-2 intercalates into numerous signaling pathways and cytoskeletal nodes. A specific interaction of Kindlin-2 that is of paramount importance in many cellular responses is its direct binding to the cytoplasmic tails of integrins, an interaction that controls many of the adhesive, migratory and signaling responses mediated by members of the integrin family of cell-surface heterodimers.

View Article and Find Full Text PDF

Objective: Corticospinal inhibitory mechanisms are relevant to functional recovery but remain poorly understood after spinal cord injury (SCI). Post-injury characteristics of contralateral silent period (CSP), a measure of corticospinal inhibition evaluated using transcranial magnetic stimulation (TMS), is inconsistent in literature. We envisioned that investigating CSP across muscles with varying degrees of weakness may be a reasonable approach to resolve inconsistencies and elucidate the relevance of corticospinal inhibition for upper extremity function following SCI.

View Article and Find Full Text PDF

Background: Cerebellum shares robust di-synaptic dentato-thalamo-cortical (DTC) connections with the contralateral motor cortex. Preclinical studies have shown that DTC are excitatory in nature. Structural integrity of DTC is associated with better upper extremity (UE) motor function in people with stroke, indicating DTC are important for cerebellar influences on movement.

View Article and Find Full Text PDF

Purpose: To estimate the effect of integrating custom-designed hand therapy video games (HTVG) with contralaterally controlled functional electrical stimulation (CCFES) therapy.

Methods: Fifty-two stroke survivors with chronic (>6 months) upper limb hemiplegia were randomized to 12 weeks of CCFES or CCFES + HTVG. Treatment involved self-administration of technology-mediated therapy at home plus therapist-administered CCFES-assisted task practice in the lab.

View Article and Find Full Text PDF

Highly aggressive, metastatic, neuroendocrine prostate cancer, which typically develops from prostate cancer cells acquiring resistance to androgen deprivation therapy, is associated with limited treatment options and hence poor prognosis. We have previously demonstrated that the αVβ3 integrin is over-expressed in neuroendocrine prostate cancer. We now show that LM609, a monoclonal antibody that specifically targets the human αVβ3 integrin, hinders the growth of neuroendocrine prostate cancer patient-derived xenografts in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Upper-extremity impairment after stroke poses significant treatment challenges, prompting the exploration of neuromodulation therapies like deep brain stimulation.
  • In a phase I trial involving 12 patients with long-term upper-extremity impairment, deep brain stimulation was applied to the cerebellar dentate nucleus in conjunction with physical rehabilitation, showing promising results without major side effects.
  • Participants experienced significant improvements in motor function, as measured by the Upper-Extremity Fugl-Meyer Assessment, with gains linked to cortical reorganization in the brain, indicating that this treatment may enhance recovery and warrant further research.
View Article and Find Full Text PDF

Mitochondria are signaling organelles implicated in cancer, but the mechanisms are elusive. Here, we show that Parkin, an E3 ubiquitination (Ub) ligase altered in Parkinson's disease, forms a complex with the regulator of cell motility, Kindlin-2 (K2), at mitochondria of tumor cells. In turn, Parkin ubiquitinates Lys581 and Lys582 using Lys48 linkages, resulting in proteasomal degradation of K2 and shortened half-life from ∼5 h to ∼1.

View Article and Find Full Text PDF

The communication of talin-activated integrin αIIbβ3 with the cytoskeleton (integrin outside-in signaling) is essential for platelet aggregation, wound healing, and hemostasis. Filamin, a large actin crosslinker and integrin binding partner critical for cell spreading and migration, is implicated as a key regulator of integrin outside-in signaling. However, the current dogma is that filamin, which stabilizes inactive αIIbβ3, is displaced from αIIbβ3 by talin to promote the integrin activation (inside-out signaling), and how filamin further functions remains unresolved.

View Article and Find Full Text PDF

Background: It has been demonstrated that in young and healthy individuals, there is a strong association between the amplitude of EEG-derived motor activity-related cortical potential or EEG spectral power (ESP) and voluntary muscle force. This association suggests that the motor-related ESP may serve as an index of central nervous system function in controlling voluntary muscle activation Therefore, it may potentially be used as an objective marker to track changes in functional neuroplasticity due to neurological disorders, aging, and following rehabilitation therapies. To this end, the relationship between the band-specific ESP-combined spectral power of EEG oscillatory and aperiodic (noise) components-and voluntary elbow flexion (EF) force has been analyzed in elder and young individuals.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) targeting the primary motor cortex is modestly effective for promoting upper-limb motor function following stroke. The premotor cortex (PMC) represents an alternative target based on its higher likelihood of survival and dense motor-network connections. The objective of this study was to determine whether ipsilesional PMC tDCS affects motor network functional connectivity (FC) in association with reduction in motor impairment, and to determine whether this relationship is influenced by baseline motor severity.

View Article and Find Full Text PDF

Kindlin-3 (K3) is critical for the activation of integrin adhesion receptors in hematopoietic cells. In humans and mice, K3 deficiency is associated with impaired immunity and bone development, bleeding, and aberrant erythrocyte shape. To delineate how K3 deficiency (K3KO) contributes to anemia and misshaped erythrocytes, mice deficient in erythroid (K3KO∖EpoR-cre) or myeloid cell K3 (K3KO∖Lyz2cre), knockin mice expressing mutant K3 (Q597W598 to AA) with reduced integrin-activation function (K3KI), and control wild-type (WT) K3 mice were studied.

View Article and Find Full Text PDF

Androgen deprivation therapies aimed to target prostate cancer (PrCa) are only partially successful given the occurrence of neuroendocrine PrCa (NEPrCa), a highly aggressive and highly metastatic form of PrCa, for which there is no effective therapeutic approach. Our group has demonstrated that while absent in prostate adenocarcinoma, the αVβ3 integrin expression is increased during PrCa progression toward NEPrCa. Here, we show a novel pathway activated by αVβ3 that promotes NE differentiation (NED).

View Article and Find Full Text PDF

The robust, reciprocal anatomic connections between the cerebellum and contralateral sensorimotor cerebral hemisphere underscore the strong physiological interdependence between these two regions in relation to human behavior. Previous studies have shown that damage to sensorimotor cortex can result in a lasting reduction of cerebellar metabolism, the magnitude of which has been linked to poor rehabilitative outcomes. A better understanding of movement-related cerebellar physiology as well as cortico-cerebellar coherence (CCC) in the chronic, poststroke state may be key to developing novel neuromodulatory techniques that promote upper limb motor rehabilitation.

View Article and Find Full Text PDF

Background: Approximately two-thirds of stroke survivors experience chronic upper limb paresis, and of them, 50% experience severe paresis. Treatment options for severely impaired survivors are often limited. Rehabilitation involves intensively engaging the paretic upper limb, and disincentivizing use of the non-paretic upper limb, with the goal to increase excitability of the ipsilesional primary motor cortex (iM1) and suppress excitability of the undamaged (contralesional) motor cortices, presumed to have an inhibitory effect on iM1.

View Article and Find Full Text PDF

Background: Multi-site studies in stroke rehabilitation are important for determining whether a technology and/or treatment can be successfully administered by sites other than the originating site and with similar positive outcomes. This study is the first multi-site clinical trial of a novel intervention for post-stroke upper limb rehabilitation called contralaterally controlled functional electrical stimulation (CCFES). Previous pilot and single-site studies showed positive effects of CCFES on upper limb impairment and hand dexterity in stroke survivors.

View Article and Find Full Text PDF

Talin-induced integrin binding to extracellular matrix ligands (integrin activation) is the key step to trigger many fundamental cellular processes including cell adhesion, cell migration, and spreading. Talin is widely known to use its N-terminal head domain (talin-H) to bind and activate integrin, but how talin-H operates in the context of full-length talin and its surrounding remains unknown. Here we show that while being capable of inducing integrin activation, talin-H alone exhibits unexpectedly low potency versus a constitutively activated full-length talin.

View Article and Find Full Text PDF
Article Synopsis
  • A multisite, double-blinded clinical trial aims to assess the safety and effectiveness of noninvasive transcranial direct current stimulation (tDCS) combined with rehabilitation for improving upper extremity recovery in individuals with chronic cervical spinal cord injury (SCI).
  • The study involves 44 adults with tetraplegia, who will be randomly assigned to receive either active or sham tDCS alongside rehabilitation, with evaluations occurring at multiple points throughout the trial.
  • Primary outcome measures will focus on upper extremity motor impairment and functional abilities, while secondary measures will investigate changes in brain activity and track treatment feasibility and safety.
View Article and Find Full Text PDF

Plasminogen and its multiple receptors have been implicated in the responses of many different cell types. Among these receptors, histone 2B (H2B) has been shown to play a prominent role in macrophage responses. The contribution of H2B to plasminogen-induced endothelial migration, an event relevant to wound healing and angiogenesis, is unknown.

View Article and Find Full Text PDF

Cancer metabolism, including in mitochondria, is a disease hallmark and therapeutic target, but its regulation is poorly understood. Here, we show that many human tumors have heterogeneous and often reduced levels of Mic60, or Mitofilin, an essential scaffold of mitochondrial structure. Despite a catastrophic collapse of mitochondrial integrity, loss of bioenergetics, and oxidative damage, tumors with Mic60 depletion slow down cell proliferation, evade cell death, and activate a nuclear gene expression program of innate immunity and cytokine/chemokine signaling.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the leading causes of cancer-related deaths due in part to its invasive and metastatic properties. Kindlin-2 (FERMT2) is associated with the pathogenesis of several cancers. Although the role of Kindlin-2 in regulating the invasion-metastasis cascade in BC is widely documented, its function in BC initiation and progression remains to be fully elucidated.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is broadly accepted that SARS-CoV-2 utilizes its spike protein to recognize the extracellular domain of angiotensin-converting enzyme 2 (ACE2) to enter cells for viral infection. However, other mechanisms of SARS-CoV-2 cell entry may occur.

View Article and Find Full Text PDF

Up to 50% of stroke survivors have persistent, severe upper extremity paresis even after receiving rehabilitation. Repetitive transcranial magnetic stimulation (rTMS) can augment the effects of rehabilitation by modulating corticomotor excitability, but the conventional approach of facilitating excitability of the ipsilesional primary motor cortex (iM1) fails to produce motor improvement in stroke survivors with severe loss of ipsilesional substrate. Instead, the undamaged, contralesional dorsal premotor cortex (cPMd) may be a more suitable target.

View Article and Find Full Text PDF

Introduction: Repetitive peripheral sensory stimulation (RPSS) followed by 4-hour task-specific training (TST) improves upper limb motor function in subjects with stroke who experience moderate to severe motor upper limb impairments. Here, we compared effects of RPSS vs sham followed by a shorter duration of training in subjects with moderate to severe motor impairments in the chronic phase after stroke.

Methods: This single-center, randomized, placebo-controlled, parallel-group clinical trial compared effects of 18 sessions of either 1.

View Article and Find Full Text PDF