Hereditary xerocytosis (HX) is a rare, autosomal dominant congenital hemolytic anemia (CHA) characterized by erythrocyte dehydration with presentation of various degrees of hemolytic anemia. HX is often misdiagnosed as hereditary spherocytosis or other CHA. Here we report three cases of suspected HX and one case of HX associated with β-thalassemia.
View Article and Find Full Text PDFThe relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism.
View Article and Find Full Text PDFBackground: The thalassemia syndromes are classified according to the globin chain or chains whose production is affected. β-thalassemias are caused by point mutations or, more rarely, deletions or insertions of a few nucleotides in the β-globin gene or its immediate flanking sequences. These mutations interfere with the gene function either at the transcriptional, translational or posttranslational level.
View Article and Find Full Text PDFAims: The main objective of the study is molecular and biological characterization of the human-yeast hybrid squalene synthase (SQS), as a promising target for treatment of hypercholesterolaemia.
Methods And Results: The human-yeast hybrid SQS, with 67% amino acids, including the catalytic site derived from human enzyme, was expressed in Saccharomyces cerevisiae strain deleted of its own SQS gene. The constructed strain has a decreased level of sterols compared to the control strain.
Rsp5 ubiquitin ligase belongs to the Nedd4 family of proteins, which affect a wide variety of processes in the cell. Here we document that Rsp5 shows several phosphorylated variants of different mobility and the migration of the phosphorylated forms of Rsp5 was faster for the tpk1Δ tpk3Δ mutant devoid of two alternative catalytic subunits of protein kinase A (PKA), indicating that PKA possibly phosphorylates Rsp5 in vivo. We demonstrated by immunoprecipitation and Western blot analysis of GFP-HA-Rsp5 protein using the anti-phospho PKA substrate antibody that Rsp5 is phosphorylated in PKA sites.
View Article and Find Full Text PDFHeme biosynthesis pathway is conserved in yeast and humans and hem12 yeast mutants mimic porphyria cutanea tarda (PCT), a hereditary human disease caused by mutations in the UROD gene. Even though mutations in other genes also affect UROD activity and predispose to sporadic PCT, the regulation of UROD is unknown. Here, we used yeast as a model to study regulation of Hem12 by ubiquitination and involvement of Rsp5 ubiquitin ligase in this process.
View Article and Find Full Text PDFPseudomonas aeruginosa ParA belongs to a large subfamily of Walker-type ATPases acting as partitioning proteins in bacteria. ParA has the ability to both self-associate and interact with its partner ParB. Analysis of the deletion mutants defined the part of the protein involved in dimerization and interactions with ParB.
View Article and Find Full Text PDFcis-Prenyltransferases (CPTs) comprise numerous enzymes synthesizing isoprenoid hydrocarbon skeleton with isoprenoid units in the cis (Z) configuration. The chain-length specificity of a particular plant CPT is in most cases unknown despite thecomposition of the accumulated isoprenoids in the tissue of interest being well established. In this report AtCPT6, one of the nine Arabidopsis thaliana CPTs, is shown to catalyze the synthesis of a family of very short-chain polyisoprenoid alcohols of six, seven, and eight isoprenoid units, those of seven units dominating The product specificity of AtCPT6 was established in vivo following its expression in the heterologous system of the yeast Saccharomyces cerevisiae and was confirmed by the absence of specific products in AtCPT6 T-DNA insertion mutants and their overaccumulation in AtCPT6-overexpressing plants.
View Article and Find Full Text PDFNon-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A), that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the Pol(D714A) mutant demonstrate that D714A does not affect the overall structure of the protein.
View Article and Find Full Text PDFBiosynthesis of cysteine is one of the fundamental processes in plants providing the reduced sulfur for cell metabolism. It is accomplished by the sequential action of two enzymes, serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Together they constitute the hetero-oligomeric cysteine synthase (CS) complex through specific protein-protein interactions influencing the rate of cysteine production.
View Article and Find Full Text PDFBackground: Human SA/STAG proteins, homologues of the yeast Irr1/Scc3 cohesin, are the least studied constituents of the sister chromatid cohesion complex crucial for proper chromosome segregation. The two SA paralogues, SA1 and SA2, show some specificity towards the chromosome region they stabilize, and SA2, but not SA1, has been shown to participate in transcriptional regulation as well. The molecular basis of this functional divergence is unknown.
View Article and Find Full Text PDFThe ParB protein of Pseudomonas aeruginosa is important for growth, cell division, nucleoid segregation and different types of motility. To further understand its function we have demonstrated a vital role of the hydrophobic residues in the C terminus of ParB(P.a.
View Article and Find Full Text PDFStatins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the sterol biosynthesis pathway. Statin therapy is commonly regarded as well tolerated. However, serious adverse effects have also been reported, especially during high-dose statin therapy.
View Article and Find Full Text PDFThe Rsp5 ubiquitin ligase regulates numerous cellular processes. Rsp5 is mainly localized to the cytoplasm but nuclear localization was also reported. A potential nuclear export signal was tested for activity by using a GFP(2) reporter.
View Article and Find Full Text PDFParB protein of Pseudomonas aeruginosa belongs to a widely represented ParB family of chromosomally and plasmid-encoded partitioning type IA proteins. Ten putative parS sites are dispersed in the P. aeruginosa chromosome, with eight of them localizing in the oriC domain.
View Article and Find Full Text PDFIn humans, defects in lipid metabolism are associated with a number of severe diseases such as atherosclerosis, obesity and type II diabetes. Hypercholesterolemia is a primary risk factor for coronary artery disease, the major cause of premature deaths in developed countries. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the sterol synthesis pathway.
View Article and Find Full Text PDFUnlabelled: THE AIM of the study is a genetic analysis of hereditary chronic nonspherocytic anaemia in a case, caused by mutation in the glucose-6-phosphate dehydrogenase gene.
Materials And Methods: The activity of G6PD enzyme was established. PCR method and DNA sequencing were implemented for molecular studies.
Hereditary spherocytosis (HS) is one of the most frequent and heterogeneous inherited haemolytic anaemias. It is associated with abnormalities of several erythrocyte membrane proteins. We investigated relative mRNA quantification of red blood cell membrane protein genes using real-time quantitative polymerase chain reaction (qPCR) in order to better characterize HS cases and to select genes to search for mutations in patients with spherocytosis.
View Article and Find Full Text PDFArabidopsis thaliana AtNUDT7, a homodimeric Nudix hydrolase active on ADP-ribose and NADH, exerts negative control on the major signaling complex involved in plant defense activation and programmed cell death. The structural and functional consequences of altering several amino-acid residues of the AtNUDT7 protein have been examined by site-directed mutagenesis, far-UV circular dichroism (CD), attenuated total reflection-Fourier transform infrared (ATR-FTIR) and photon correlation (PCS) spectroscopy, biochemical analysis and protein-protein interaction studies. Alanine substitutions of F73 and V168 disallowed dimer formation.
View Article and Find Full Text PDFThe T4 and RB69 DNA replicative polymerases are members of the B family and are highly similar. Both replicate DNA with high fidelity and employ the same mechanism that allows efficient switching of the primer terminus between the polymerase and exonuclease sites. Both polymerases have a beta hairpin loop (hereafter called the beta loop) in their exonuclease domains that plays an important role in active-site switching.
View Article and Find Full Text PDFAims: Statins - inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase - are known to reduce blood cholesterol levels. In this paper, we present a Saccharomyces cerevisiae expression system, which enables quick evaluation of the sensitivity of the wild-type and/or mutant forms of human HMG-CoA reductase towards statins or other drugs.
Methods And Results: We analysed the sequence of the HMG-CoA reductase gene in DNA extracted from blood samples of 16 patients with cardiovascular disorders.