Beta-2'-C-methyl purines (1, 2) are known inhibitors of hepatitis C virus (HCV). We herein report the synthesis, biological and enzymatic evaluation of their 5'-phosphoramidate ProTides. Described herein are seven l-alanine phosphoramidate derivatives with variations to the amino acid ester.
View Article and Find Full Text PDFWe report the design, synthesis and evaluation of a family of ca 50 phosphoramidate ProTides of the potent anti-HCV compound 4'-azidocytidine (R1479), with variation on the ester, amino acid and aryl moiety of the ProTide. Sub-muM inhibitors of HCV emerge. The compounds are all non-cytotoxic in the replicon assay.
View Article and Find Full Text PDFWe report on the synthesis of the anti hepatitis C virus (HCV) agent 4'-azidoadenosine (1) and the application of the phosphoramidate ProTide technology to this nucleoside. The synthesis of 1 was achieved through an epoxide intermediate followed by regio- and stereoselective ring opening by azidotrimethylsilane in the presence of a Lewis acid. Compound 1 did not inhibit HCV replication in cell culture at concentrations up to 0.
View Article and Find Full Text PDFWe report the application of our phosphoramidate ProTide technology to the ribonucleoside analogue 4'-azidouridine to generate novel antiviral agents for the inhibition of hepatitis C virus (HCV). 4'-Azidouridine did not inhibit HCV, although 4'-azidocytidine was a potent inhibitor of HCV replication under similar assay conditions. However 4'-azidouridine triphosphate was a potent inhibitor of RNA synthesis by HCV polymerase, raising the question as to whether our phosphoramidate ProTide approach could effectively deliver 4'-azidouridine monophosphate to HCV replicon cells and unleash the antiviral potential of the triphosphate.
View Article and Find Full Text PDF