Muscle ankyrin repeat protein 1 (MARP1) is frequently up-regulated in stressed muscle, but its effect on skeletal muscle function is poorly understood. Here, we focused on its interaction with the titin-N2A element, found in titin's molecular spring region. We show that MARP1 binds to F-actin, and that this interaction is stronger when MARP1 forms a complex with titin-N2A.
View Article and Find Full Text PDFRationale: Diaphragm weakness in critically ill patients prolongs ventilator dependency and duration of hospital stay and increases mortality and healthcare costs. The mechanisms underlying diaphragm weakness include cross-sectional fiber atrophy and contractile protein dysfunction, but whether additional mechanisms are at play is unknown.
Objectives: To test the hypothesis that mechanical ventilation with positive end-expiratory pressure (PEEP) induces longitudinal atrophy by displacing the diaphragm in the caudal direction and reducing the length of fibers.
Rationale: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency and increases morbidity, duration of hospital stay, and health care costs. The mechanisms underlying diaphragm weakness are unknown, but might include mitochondrial dysfunction and oxidative stress.
Objectives: We hypothesized that weakness of diaphragm muscle fibers in critically ill patients is accompanied by impaired mitochondrial function and structure, and by increased markers of oxidative stress.
Am J Physiol Lung Cell Mol Physiol
July 2016
Patients with pulmonary hypertension (PH) suffer from inspiratory muscle weakness. However, the pathophysiology of inspiratory muscle dysfunction in PH is unknown. We hypothesized that weakness of the diaphragm, the main inspiratory muscle, is an important contributor to inspiratory muscle dysfunction in PH patients.
View Article and Find Full Text PDFRationale: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency, and increases morbidity and duration of hospital stay. To date, the nature of diaphragm weakness and its underlying pathophysiologic mechanisms are poorly understood.
Objectives: We hypothesized that diaphragm muscle fibers of mechanically ventilated critically ill patients display atrophy and contractile weakness, and that the ubiquitin-proteasome pathway is activated in the diaphragm.
Am J Physiol Lung Cell Mol Physiol
September 2014
Several studies have indicated that diaphragm dysfunction develops in patients on mechanical ventilation (MV). Here, we tested the hypothesis that the contractility of sarcomeres, i.e.
View Article and Find Full Text PDF