Publications by authors named "Plesnila N"

Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.

View Article and Find Full Text PDF

SARS-CoV-2 infection is associated with long-lasting neurological symptoms, although the underlying mechanisms remain unclear. Using optical clearing and imaging, we observed the accumulation of SARS-CoV-2 spike protein in the skull-meninges-brain axis of human COVID-19 patients, persisting long after viral clearance. Further, biomarkers of neurodegeneration were elevated in the cerebrospinal fluid from long COVID patients, and proteomic analysis of human skull, meninges, and brain samples revealed dysregulated inflammatory pathways and neurodegeneration-associated changes.

View Article and Find Full Text PDF

Current techniques for inducing intraluminal filamentous middle cerebral artery occlusion (fMCAo) in mice produce highly variable results and often cause additional infarcts in the posterior cerebral artery (PCA) territory. The aim of the current study was to develop a novel procedure to overcome these shortcomings. Male C57BL/6 mice were subjected to 60 min of fMCAo with cerebral blood flow monitored by laser Doppler flowmetry.

View Article and Find Full Text PDF

Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution.

View Article and Find Full Text PDF
Article Synopsis
  • - Chronic comorbidities following a stroke contribute significantly to patient health, and this study investigates how immune system changes may play a role in these issues.
  • - Researchers discovered that the immune response, particularly in monocytes/macrophages, remains persistently pro-inflammatory in various organs, especially the heart, even months after a stroke.
  • - Targeting IL-1β and blocking certain immune cell movement successfully prevented heart dysfunction in a study, suggesting potential new therapies for managing post-stroke complications.
View Article and Find Full Text PDF
Article Synopsis
  • Consensus statements are important in medicine and public health, but not all use solid evidence to support their claims.
  • Some statements rely on expert panels, which can be biased if many members share the same opinions or interests, especially without a thorough review of evidence.
  • A recent case about COVID-19 showed that many panel members had strong connections to groups pushing for strict COVID measures without revealing these biases, highlighting the need for clear conflicts of interest to ensure trustworthiness.
View Article and Find Full Text PDF

Neuronal activity is accompanied by a net outflow of potassium ions (K) from the intra- to the extracellular space. While extracellular [K] changes during neuronal activity are well characterized, intracellular dynamics have been less well investigated due to lack of respective probes. In the current study we characterized the FRET-based K biosensor lc-LysM GEPII 1.

View Article and Find Full Text PDF

The kallikrein-kinin system is one of the first inflammatory pathways to be activated following traumatic brain injury (TBI) and has been shown to exacerbate brain edema formation in the acute phase through activation of bradykinin 2 receptors (B2R). However, the influence of B2R on chronic post-traumatic damage and outcome is unclear. In the current study, we assessed long-term effects of B2R-knockout (KO) after experimental TBI.

View Article and Find Full Text PDF

Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution.

View Article and Find Full Text PDF

Background: It is unknown whether decompressive craniectomy improves clinical outcome for people with spontaneous severe deep intracerebral haemorrhage. The SWITCH trial aimed to assess whether decompressive craniectomy plus best medical treatment in these patients improves outcome at 6 months compared to best medical treatment alone.

Methods: In this multicentre, randomised, open-label, assessor-blinded trial conducted in 42 stroke centres in Austria, Belgium, Finland, France, Germany, the Netherlands, Spain, Sweden, and Switzerland, adults (18-75 years) with a severe intracerebral haemorrhage involving the basal ganglia or thalamus were randomly assigned to receive either decompressive craniectomy plus best medical treatment or best medical treatment alone.

View Article and Find Full Text PDF

Rationale: Decompressive craniectomy (DC) is beneficial in people with malignant middle cerebral artery infarction. Whether DC improves outcome in spontaneous intracerebral haemorrhage (ICH) is unknown.

Aim: To determine whether DC without haematoma evacuation plus best medical treatment (BMT) in people with ICH decreases the risk of death or dependence at 6 months compared to BMT alone.

View Article and Find Full Text PDF

Incomplete reperfusion of the microvasculature ('no-reflow') after ischaemic stroke damages salvageable brain tissue. Previous ex vivo studies suggest pericytes are vulnerable to ischaemia and may exacerbate no-reflow, but the viability of pericytes and their association with no-reflow remains under-explored in vivo. Using longitudinal in vivo two-photon single-cell imaging over 7 days, we showed that 87% of pericytes constrict during cerebral ischaemia and remain constricted post reperfusion, and 50% of the pericyte population are acutely damaged.

View Article and Find Full Text PDF

: Dissecting the complex pathological cascade of an ischemic stroke in preclinical models is highly warranted to understand the course of this disease in humans. Neurogenesis and angiogenesis are integral for post-stroke recovery, yet it is not clear how these processes are altered months after an ischemic stroke. In this study, we investigated the changes that take place subacutely after focal cerebral ischemia in experimental adult male mice.

View Article and Find Full Text PDF

Ischemic stroke is a major global health issue and characterized by acute vascular dysfunction and subsequent neuroinflammation. However, the relationship between these processes remains elusive. In the current study, we investigated whether alleviating vascular dysfunction by restoring vascular nitric oxide (NO) reduces post-stroke inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • CADASIL is a rare genetic neurological disorder linked to NOTCH3 gene mutations, leading to symptoms like migraines, strokes, dementia, and early mortality.
  • Researchers tested the neuropeptide drug Cerebrolysin on NOTCH3 mutant mice, finding it improved spatial memory, health, and lifespan, but didn't change specific white matter issues related to CADASIL.
  • The treatment increased levels of certain beneficial proteins while decreasing others, suggesting that Cerebrolysin could be a potential therapeutic option for CADASIL and conditions related to accelerated aging.
View Article and Find Full Text PDF

Significant progress has been made with regard to understanding how the adult brain responds after a stroke. However, a large number of patients continue to suffer lifelong disabilities without adequate treatment. In the present study, we have analyzed possible microanatomical alterations in the contralesional hippocampus from the ischemic stroke mouse model tMCAo 12-14 weeks after transient middle cerebral artery occlusion.

View Article and Find Full Text PDF

Mutations of large conductance Ca- and voltage-activated K channels (BK) are associated with cognitive impairment. Here we report that CA1 pyramidal neuron-specific conditional BK knock-out (cKO) mice display normal locomotor and anxiety behavior. They do, however, exhibit impaired memory acquisition and retrieval in the Morris Water Maze (MWM) when compared to littermate controls (CTRL).

View Article and Find Full Text PDF

Brain edema formation is a key factor for secondary tissue damage after traumatic brain injury (TBI), however, the type of brain edema and the temporal profile of edema formation are still unclear. We performed free water imaging, a bi-tensor model based diffusion MRI analysis, to characterize vasogenic brain edema (VBE) and cytotoxic edema (CBE) formation up to 7 days after experimental TBI. Male C57/Bl6 mice were subjected to controlled cortical impact (CCI) or sham surgery and investigated by MRI 4h, 1, 2, 3, 5, and 7 days thereafter ( = 8/group).

View Article and Find Full Text PDF

Background: The only established pharmacological treatment option improving outcomes for patients suffering from subarachnoid hemorrhage (SAH) is the L-type-calcium channel inhibitor nimodipine. However, the exact mechanisms of action of nimodipine conferring neuroprotection after SAH have yet to be determined. More recently, spasms of the cerebral microcirculation were suggested to play an important role in reduced cerebral perfusion after SAH and, ultimately, outcome.

View Article and Find Full Text PDF
Article Synopsis
  • - The study highlights the unique molecular characteristics of bone marrow in the skull, contrasting it with other bones and demonstrating its significant role in immune responses within the brain and meninges.
  • - Researchers found that mouse skull marrow exhibits a distinct transcriptomic profile, particularly in relation to neutrophils, and similar proteomic differences were observed in human skull marrow.
  • - Advanced imaging techniques reveal the structural connections between the skull and meninges, and the skull marrow's inflammatory response correlates with neurological disorders, suggesting its potential in diagnosing and treating brain diseases.
View Article and Find Full Text PDF

Background: Subarachnoid hemorrhage (SAH) is characterized by an acute reduction of cerebral blood flow and subsequent cortical infarcts, but the underlying mechanisms are not well understood. Since pericytes regulate cerebral perfusion on the capillary level, we hypothesize that pericytes may reduce cerebral perfusion after SAH.

Methods: Pericytes and vessel diameters of cerebral microvessels were imaged in vivo using NG2 (neuron-glial antigen 2) reporter mice and 2-photon microscopy before and 3 hours after sham surgery or induction of SAH by perforating the middle cerebral artery with an intraluminal filament.

View Article and Find Full Text PDF

Background: Subarachnoid hemorrhage (SAH) is characterized by acute and delayed reductions of cerebral blood flow (CBF) caused, among others, by spasms of cerebral arteries and arterioles. Recently, the inactivation of perivascular macrophages (PVM) has been demonstrated to improve neurological outcomes after experimental SAH, but the underlying mechanisms of protection remain unclear. The aim of our exploratory study was, therefore, to investigate the role of PVM in the formation of acute microvasospasms after experimental SAH.

View Article and Find Full Text PDF

Neural stem and progenitor cell (NSPC) transplants provide neuroprotection in models of acute brain injury, but the underlying mechanisms are not fully understood. Here, we provide evidence that caspase-dependent apoptotic cell death of NSPCs is required for sending survival signals to the injured brain. The secretome of dying NSPCs contains heat-stable proteins, which protect neurons against glutamate-induced toxicity and trophic factor withdrawal in vitro, and from ischemic brain damage in vivo.

View Article and Find Full Text PDF