Publications by authors named "Pleshakova t"

Biomacromolecules generally exist and function in aqueous media. Is it possible to estimate the state and properties of molecules in an initial three-dimensional colloidal solution based on the structure properties of biomolecules adsorbed on the two-dimensional surface? Using atomic force microscopy to study nanosized objects requires their immobilization on a surface. Particles undergoing Brownian motion in a solution significantly reduce their velocity near the surface and become completely immobilized upon drying.

View Article and Find Full Text PDF

Limit of detection (LoD) is a term that is used to characterize the sensitivity of an analytical method. The existing limitation of the sensitivity of analysis using modern mass spectrometry methods has been experimentally shown to be a limiting factor in the application of proteomic technologies in medicine. This article proposes a concept of a new technology that will set a new vector of development in the development of systems for solving problems of medical diagnostics and deals with theoretical and practical aspects of creating a new technology for the detection of single biomacromolecules (in particular, proteins) in biological samples.

View Article and Find Full Text PDF

Myocardial infarction is a major cause of morbidity and mortality worldwide. Metabolomic investigations may be useful for understanding the pathogenesis of ST-segment elevation myocardial infarction (STEMI). STEMI patients were comprehensively examined via targeted metabolomic profiling, machine learning and weighted correlation network analysis.

View Article and Find Full Text PDF

The review considers modern achievements and prospects of using nanowire biosensors, principles of their operation, methods of fabrication, and the influence of the Debye effect, which plays a key role in improving the biosensor characteristics. Special attention is paid to the practical application of such biosensors for the detection of a variety of biomolecules, demonstrating their capabilities and potential in the detection of a wide range of biomarkers of various diseases. Nanowire biosensors also show excellent results in such areas as early disease diagnostics, patient health monitoring, and personalized medicine due to their high sensitivity and specificity.

View Article and Find Full Text PDF

The review considers the possibility of using atomic force microscopy (AFM) as a basic method for protein detection in solutions with low protein concentrations. The demand for new bioanalytical approaches is determined by the problem of insufficient sensitivity of systems used in routine practice for protein detection. Special attention is paid to demonstration of the use in bioanalysis of a combination of AFM and fishing methods as an approach of concentrating biomolecules from a large volume of the analyzed solution on a small surface area.

View Article and Find Full Text PDF

Eighty years ago, the Institute of Biomedical Chemistry (IBMC) initially known as the Institute of Biological and Medical Chemistry of the Academy of Sciences of the USSR was founded. During the first decades significant studies were performed; they not only contributed to a deeper understanding of biochemical processes in the living organisms, but also laid the foundation for further development of these fields. The main directions of IBMC were focused on studies of structures of enzymes (primarily various proteases), their substrates and inhibitors, the role of enzymes of carbohydrate metabolism in the development of pathologies, study of the mechanisms of hydrolytic and oxidative-hydrolytic transformation of organic compounds, studies of connective tissue proteins, including collagens, study of amino acid metabolism.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) represents one of the main causes of mortality worldwide and nearly a half of it is related to ischemic heart disease (IHD). The article represents a comprehensive study on the diagnostics of IHD through the targeted metabolomic profiling and machine learning techniques. A total of 112 subjects were enrolled in the study, consisting of 76 IHD patients and 36 non-CVD subjects.

View Article and Find Full Text PDF

This work demonstrates the use of a modified mica to concentrate proteins, which is required for proteomic profiling of blood plasma by mass spectrometry (MS). The surface of mica substrates, which are routinely used in atomic force microscopy (AFM), was modified with a photocrosslinker to allow "irreversible" binding of proteins via covalent bond formation. This modified substrate was called the AFM chip.

View Article and Find Full Text PDF

Currently, there is great interest in the development of highly sensitive bioanalytical systems for diagnosing diseases at an early stage, when pathological biomarkers are present in biological fluids at low concentrations and there are no clinical manifestations. A promising direction is the use of molecular detectors-highly sensitive devices that detect signals from single biomacromolecules. A typical detector in this class is the atomic force microscope (AFM).

View Article and Find Full Text PDF

Morphological features of the nanoform of a phospholipid composition (NFPh), which can be used as an individual pharmaceutic agent or as a platform for designing drug delivery systems, have been studied using atomic force microscopy (AFM). NFPh has been developed, and its characteristics have been investigated using conventional drug analysis methods, including the determination of the mean diameter of nanosized vesicles in the emulsion via dynamic light scattering (DLS). Using DLS, the mean diameter of the vesicles was found to be ~20 nm.

View Article and Find Full Text PDF

The development of highly sensitive diagnostic systems for the early revelation of diseases in humans is one of the most important tasks of modern biomedical research, and the detection of the core antigen of the hepatitis C virus (HCVcoreAg)-a protein marker of the hepatitis C virus-is just the case. Our study is aimed at testing the performance of the nanoribbon biosensor in the case of the use of two different types of molecular probes: the antibodies and the aptamers against HCVcoreAg. The nanoribbon sensor chips employed are based on "silicon-on-insulator structures" (SOI-NR).

View Article and Find Full Text PDF

Prostate cancer (PC) is one of the major causes of death among elderly men. PC is often diagnosed later in progression due to asymptomatic early stages. Early detection of PC is thus crucial for effective PC treatment.

View Article and Find Full Text PDF

Mass spectrometry (MS) is one of the main techniques for protein identification. Herein, MS has been employed for the identification of bovine serum albumin (BSA), which was covalently immobilized on the surface of a mica chip intended for investigation by atomic force microscopy (AFM). For the immobilization, two different types of crosslinkers have been used: 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) and dithiobis(succinimidyl propionate) (DSP).

View Article and Find Full Text PDF

The beginning of the twenty-first century witnessed novel breakthrough research directions in the life sciences, such as genomics, transcriptomics, translatomics, proteomics, metabolomics, and bioinformatics. A newly developed single-molecule approach addresses the physical and chemical properties and the functional activity of single (individual) biomacromolecules and viral particles. Within the alternative approach, the combination of "single-molecule approaches" is opposed to "omics approaches".

View Article and Find Full Text PDF

Ovarian cancer is a gynecological cancer characterized by a high mortality rate and tumor heterogeneity. Its early detection and primary prophylaxis are difficult to perform. Detecting biomarkers for ovarian cancer plays a pivotal role in therapy effectiveness and affects patients' survival.

View Article and Find Full Text PDF

This paper presents an investigation of the temperature dependence of the oligomeric state of the horseradish peroxidase (HRP) enzyme on the temperature of its solution, and on the solution storage time, at the single-molecule level. Atomic force microscopy has been employed to determine how the temperature and the storage time of the HRP solution influence its aggregation upon direct adsorption of the enzyme from the solution onto bare mica substrates. In parallel, spectrophotometric measurements have been performed in order to estimate whether the HRP enzymatic activity changes over time upon the storage of the enzyme solution.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), which represent short (20 to 22 nt) non-coding RNAs, were found to play a direct role in the development of autism in children. Herein, a highly sensitive "silicon-on-insulator"-based nanosensor (SOI-NS) has been developed for the revelation of autism-associated miRNAs. This SOI-NS comprises an array of nanowire sensor structures fabricated by complementary metal-oxide-semiconductor (CMOS)-compatible technology, gas-phase etching, and nanolithography.

View Article and Find Full Text PDF

A nanoribbon biosensor (NRBS) was developed to register synthetic DNAs that simulate and are analogous to miRNA-17-3p associated with colorectal cancer. Using this nanoribbon biosensor, the ability to detect miRNA-17-3p in the blood plasma of a patient diagnosed with colorectal cancer has been demonstrated. The sensing element of the NRBS was a nanochip based on a silicon-on-insulator (SOI) nanostructure.

View Article and Find Full Text PDF

MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood-brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs.

View Article and Find Full Text PDF

Nanoribbon chips, based on "silicon-on-insulator" structures (SOI-NR chips), have been fabricated. These SOI-NR chips, whose surface was sensitized with covalently immobilized oligonucleotide molecular probes (oDNA probes), have been employed for the nanoribbon biosensor-based detection of a circular ribonucleic acid (circRNA) molecular marker of glioma in humans. The nucleotide sequence of the oDNA probes was complimentary to the sequence of the target oDNA.

View Article and Find Full Text PDF

The review covers some research conducted in the field of medical and biomedical application of devices based on silicon sensor elements (Si-NW-sensors). The use of Si-NW-sensors is one of the key methods used in a whole range of healthcare fields. Their biomedical use is among the most important ones as they offer opportunities for early diagnosis of oncological pathologies, for monitoring the prescribed therapy and for improving the people's quality of life.

View Article and Find Full Text PDF

The application of micro-Raman spectroscopy was used for characterization of structural features of the high-k stack (h-k) layer of "silicon-on-insulator" (SOI) nanowire (NW) chip (h-k-SOI-NW chip), including AlO and HfO in various combinations after heat treatment from 425 to 1000 °C. After that, the NW structures h-k-SOI-NW chip was created using gas plasma etching optical lithography. The stability of the signals from the monocrine phase of HfO was shown.

View Article and Find Full Text PDF

External electromagnetic fields are known to be able to concentrate inside the construction elements of biosensors and bioreactors owing to reflection from their surface. This can lead to changes in the structure of biopolymers (such as proteins), incubated inside these elements, thus influencing their functional properties. Our present study concerned the revelation of the effect of spherical elements, commonly employed in biosensors and bioreactors, on the physicochemical properties of proteins with the example of the horseradish peroxidase (HRP) enzyme.

View Article and Find Full Text PDF

In our present paper, the influence of a pyramidal structure on physicochemical properties of a protein in buffer solution has been studied. The pyramidal structure employed herein was similar to those produced industrially for anechoic chambers. Pyramidal structures are also used as elements of biosensors.

View Article and Find Full Text PDF

The detection of influenza A virions with a nanoribbon detector (NR detector) has been demonstrated. Chips for the detector have been fabricated based on silicon-on-insulator nanoribbon structures (SOI nanoribbon chip), using a complementary metal-oxide-semiconductor (CMOS)-compatible technology-by means of gas-phase etching and standard optical photolithography. The surface of the SOI nanoribbon chip contains a matrix of 10 nanoribbon (NR) sensor elements.

View Article and Find Full Text PDF