Publications by authors named "Plenter R"

Acute kidney injury (AKI) after transplantation of human deceased donor kidneys is associated with upregulation of tubular toll like receptor 4 (TLR4), but whether TLR4 is required for AKI is unknown. We hypothesized that TLR4 knockout mice (TLR4KO) subjected to cold ischemia followed by kidney transplant (CI + Txp) would be protected from AKI. C57Bl/6J wild type or TLR4KO kidneys were subjected to CI + Txp into wild type recipients.

View Article and Find Full Text PDF

Background: Caspase-1 knockout mice (Casp1KO) are protected from Acute Kidney Injury (AKI) after warm ischemia/reperfusion injury in non-transplant models. Since Caspase-1 plays a central role as an inflammatory response initiator, we hypothesized that Casp1KO mice would be protected from AKI following transplant.

Methods: Renal tubular cells (RTECs) were subjected to cold storage and rewarming (CS/REW).

View Article and Find Full Text PDF

One of the cornerstone research models used in our laboratories is the induction of ischemic injury through cold ischemia followed by warm ischemia to donor kidneys to mimic the clinical realities of transplantation. The experimental design of the present study included bilateral nephrectomies on the day of syngeneic kidney transplant, with serum creatinine measured 24 hours postoperatively to measure acute function. Cold ischemia time in these experiments was always 30 minutes, and warm ischemia time was not standardized but always recorded.

View Article and Find Full Text PDF

Background: Prolonged cold ischemia (CI) is a risk factor for acute kidney injury after kidney transplantation. We endeavored to determine the pathways involved in the development of tubular cell injury and death before and after transplantation. We hypothesized that ex vivo cold storage before transplant would produce a different injury phenotype to that seen after engraftment in kidney transplants with or without CI.

View Article and Find Full Text PDF

Autologous C-kit cells robustly prolong cardiac allografts. As C-kit cells can transdifferentiate to hematopoietic cells as well as non-hematopoietic cells, we aimed to clarify the class(es) of C-kit-derived cell(s) required for cardiac allograft prolongation. Autologous C-kit cells were administered post-cardiac transplantation and allografts were evaluated for C-kit inoculum-derived cells.

View Article and Find Full Text PDF

The induction of tolerance to transplanted organs is a major objective in transplantation immunology research. Lymphocyte function-associated antigen-1 (LFA-1) interactions have been identified as a key component of the T-cell activation process that may be interrupted to lead to allograft tolerance. In mice, αLFA-1 mAb is a potent monotherapy that leads to the induction of donor-specific transferable tolerance.

View Article and Find Full Text PDF

Background: Prolonged cold ischemia is a risk factor for delayed graft function of kidney transplants, and is associated with caspase-3-mediated apoptotic tubular cell death. We hypothesized that treatment of tubular cells and donor kidneys during cold storage with a caspase inhibitor before transplant would reduce tubular cell apoptosis and improve kidney function after transplant.

Methods: Mouse tubular cells were incubated with either dimethyl sulfoxide (DMSO) or Q-VD-OPh during cold storage in saline followed by rewarming in normal media.

View Article and Find Full Text PDF

Several approaches successfully achieve allograft tolerance in preclinical models but are challenging to translate into clinical practice. Many clinically relevant factors can attenuate allograft tolerance induction, including intrinsic genetic resistance, peritransplant infection, inflammation, and preexisting antidonor immunity. The prevailing view for immune memory as a tolerance barrier is that the host harbors memory cells that spontaneously cross-react to donor MHC antigens.

View Article and Find Full Text PDF

Natural killer (NK) cells are key components of the innate immune system. In murine cardiac transplant models, donor-specific antibodies (DSA), in concert with NK cells, are sufficient to inflict chronic allograft vasculopathy independently of T and B cells. In this study, we aimed to determine the effector mechanism(s) required by NK cells to trigger chronic allograft vasculopathy during antibody-mediated rejection.

View Article and Find Full Text PDF

The first mouse kidney transplant technique was published in 1973(1) by the Russell laboratory. Although it took some years for other labs to become proficient in and utilize this technique, it is now widely used by many laboratories around the world. A significant refinement to the original technique using the donor aorta to form the arterial anastomosis instead of the renal artery was developed and reported in 1993 by Kalina and Mottram (2) with a further advancement coming from the same laboratory in 1999 (3).

View Article and Find Full Text PDF

Aim: One of the most challenging research microsurgical techniques is the mouse kidney transplant however, very few laboratories have made use of this important model due to its difficulty. One of the main obstacles to utilizing this procedure is the high incidence of post-operative arterial thrombosis. We believe this is caused by the path in which blood is required to flow from the recipient abdominal aorta, via the donor recipient aorta and on into the renal artery creating a tortuous route and areas of turbulence, which are prone to thrombus formation and failure of the graft.

View Article and Find Full Text PDF

Fas Ligand limits inflammatory injury and permits allograft survival by inducing apoptosis of Fas-bearing lymphocytes. Previous studies have shown that the CD4(+) T-cell is both sufficient and required for murine cardiac allograft rejection. Here, utilizing a transgenic mouse that over-expresses Fas Ligand specifically on cardiomyocytes as heart donors, we sought to determine if Fas Ligand on graft parenchymal cells could resist CD4(+) T-cell mediated rejection.

View Article and Find Full Text PDF

Prolonged cold storage and re-warming (CS/REW) of kidneys are risk factors for delayed graft function (DGF). Studies in renal tubular epithelial cells (RTECs) have determined apoptosis and autophagy in models of either cold storage (CS) or re-warming alone. The effect of both cold storage and re-warming on apoptosis and autophagy, in RTECS is not known and is relevant to DGF as the kidney is subjected to both CS and re-warming.

View Article and Find Full Text PDF

It is now over forty years since this technique was first reported by Corry, Wynn and Russell. Although it took some years for other labs to become proficient in and utilize this technique, it is now widely used by many laboratories around the world. A significant refinement to the original technique was developed and reported in 2001 by Niimi.

View Article and Find Full Text PDF

Since the first clinical heart transplant in 1967, there has been a heightened need to understand immune and inflammatory responses to "foreign" tissues. Research efforts in those early days were based on species that would now be considered "large" and were typically out-bred individuals. While this closely mirrors the clinical scenario, where genetic mismatches of donors and recipients can only be minimized in the selection process, these were not ideal models for studying the complexities and nuances of the immune system.

View Article and Find Full Text PDF

Background: Previous studies have shown that acute CD4 T-cell-mediated cardiac allograft rejection requires donor major histocompatibility complex (MHC) Class II expression and can be independent of "indirect" antigen presentation. However, other studies suggested that indirect antigen presentation to CD4 T cells may play a primary role in cellular xenograft immunity. Thus, the relative roles of direct/indirect CD4 T cell reactivity against cardiac xenografts are unclear.

View Article and Find Full Text PDF

Autologous CD117(+) progenitor cells (PC) have been successfully utilized in myocardial infarction and ischemic injury, potentially through the replacement/repair of damaged vascular endothelium. To date, such cells have not been used to enhance solid organ transplant outcome. In this study, we determined whether autologous bone marrow-derived CD117(+) PC could benefit cardiac allograft survival, possibly by replacing donor vascular cells.

View Article and Find Full Text PDF

Background: CD4 T cells can suffice as effector cells to mediate primary acute cardiac allograft rejection. Although CD4 T cells can readily kill appropriate target cells in vitro, the corresponding role of such cytolytic activity for mediating allograft rejection in vivo is unknown. Therefore, we determined whether the cytolytic effector molecules perforin (PFP) and/or FasL (CD95L) were necessary for CD4 T cell-mediated rejection in vivo.

View Article and Find Full Text PDF

Background: Acute cardiac allograft rejection requires host, but not donor, expression of B7-1/B7-2 costimulatory molecules. However, acute cardiac rejection requires direct antigen presentation by donor-derived antigen presenting cells to CD4 T-cells and does not require indirect antigen presentation to CD4 T-cells. Given this discrepancy in the literature and that the consequence of allograft exposure in B7-deficient mice is unknown; the goal of the study was to examine the antidonor status of allografted B7-1/B7-2-deficient hosts.

View Article and Find Full Text PDF

CD4 T cells are both necessary and sufficient to mediate acute cardiac allograft rejection in mice. This process requires "direct" engagement of donor MHC class II molecules. That is, acute rejection by CD4+ T cells requires target MHC class II expression by the donor and not by the host.

View Article and Find Full Text PDF

We aimed to define the gross anatomy of the supporting structures of the clitoris. We performed a dissection of the perineum of a series of 22 female and four male cadavers. Specific dissection of the clitoral and penile suspensory ligament complex was performed in four female and two male cadavers.

View Article and Find Full Text PDF

Purpose: We investigated the anatomical relationship between the urethra and the surrounding erectile tissue, and reviewed the appropriateness of the current nomenclature used to describe this anatomy.

Materials And Methods: A detailed dissection was performed on 2 fresh and 8 fixed human female adult cadavers (age range 22 to 88 years). The relationship of the urethra to the surrounding erectile tissue was ascertained in each specimen, and the erectile tissue arrangement was determined and compared to standard anatomical descriptions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: