Publications by authors named "Plaxton W"

Plant glutamate decarboxylase (GAD) is a Ca-calmodulin (CaM) activated enzyme that produces γ-aminobutyrate (GABA) as the first committed step of the GABA shunt. Our prior research established that in vivo phosphorylation of AtGAD1 (AT5G17330) occurs at multiple N-terminal serine residues following Pi resupply to Pi-starved cell cultures of the model plant Arabidopsis thaliana. The aim of the current investigation was to purify recombinant AtGAD1 (rAtGAD1) following its expression in Escherichia coli to facilitate studies of the impact of phosphorylation on its kinetic properties.

View Article and Find Full Text PDF

Fructose bisphosphate aldolases (FBAs) catalyze the reversible cleavage of fructose 1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. We analyzed two previously uncharacterized cytosolic Arabidopsis FBAs, AtFBA4 and AtFBA5. Based on a recent report, we examined the interaction of AtFBA4 with calmodulin (CaM)-like protein 11 (AtCML11).

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first committed step of the oxidative pentose phosphate pathway (OPPP). Our recent phosphoproteomics study revealed that the cytosolic G6PD6 isozyme became hyperphosphorylated at Ser12, Thr13 and Ser18, 48 h following phosphate (Pi) resupply to Pi-starved (-Pi) cell cultures. The aim of the present study was to assess whether G6PD6 phosphorylation also occurs in shoots or roots following Pi resupply to -Pi seedlings, and to investigate its relationship with G6PD activity.

View Article and Find Full Text PDF

Eukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied.

View Article and Find Full Text PDF

Calmodulin (CaM)-like proteins (CMLs) are the largest family of calcium-binding proteins in plants, yet the functions of most CMLs are unknown. Arabidopsis CML13 and CML14 are closely related paralogs that interact with the isoleucine-glutamine (IQ) domains of myosins, IQ-domain proteins and CaM-binding transcription activators (CAMTAs). Here, we explored the physiological roles of CML13 and CML14 during development by using dexamethasone (Dex)-inducible RNA silencing to suppress either CML13 or CML14 transcript levels.

View Article and Find Full Text PDF

Glutamate decarboxylase (GAD) is a Ca -calmodulin-activated, cytosolic enzyme that produces γ-aminobutyrate (GABA) as the committed step of the GABA shunt. This pathway bypasses the 2-oxoglutarate to succinate reactions of the tricarboxylic acid (TCA) cycle. GABA also accumulates during many plant stresses.

View Article and Find Full Text PDF

AtCPK4 and AtCPK11 are Arabidopsis thaliana Ca-dependent protein kinase (CDPK) paralogs that have been reported to positively regulate abscisic acid (ABA) signal transduction by phosphorylating ABA-responsive transcription factor-4 (AtABF4). By contrast, RcCDPK1, their closest Ricinus communis ortholog, participates in the control of anaplerotic carbon flux in developing castor oil seeds by catalyzing inhibitory phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser451. LC-MS/MS revealed that AtCPK4 and RcCDPK1 transphosphorylated several common, conserved residues of AtABF4 and its castor ortholog, TRANSCRIPTION FACTOR RESPONSIBLE FOR ABA REGULATON.

View Article and Find Full Text PDF

Corticosteroids are standard of care for patients with severe coronavirus disease (COVID-19). However, the optimal dose is uncertain. To compare higher doses of corticosteroids with lower doses in patients with COVID-19.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated enzyme that plays a crucial anaplerotic role in central plant metabolism. Bacterial-type PEPC (BTPC) of developing castor oil seeds (COS) is highly expressed as a catalytic and regulatory subunit of a novel Class-2 PEPC heteromeric complex. Ricinus communis Ca2+-dependent protein kinase-1 (RcCDPK1) catalyzes in vivo inhibitory phosphorylation of COS BTPC at Ser451.

View Article and Find Full Text PDF

A 35 kDa monomeric purple acid phosphatase (APase) was purified from cell wall extracts of Pi starved (-Pi) Arabidopsis thaliana suspension cells and identified as AtPAP17 (At3g17790) by mass spectrometry and N-terminal microsequencing. AtPAP17 was de novo synthesized and dual-localized to the secretome and/or intracellular fraction of -Pi or salt-stressed plants, or senescing leaves. Transiently expressed AtPAP17-green fluorescent protein localized to lytic vacuoles of the Arabidopsis suspension cells.

View Article and Find Full Text PDF

Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency.

View Article and Find Full Text PDF

Phosphorus absorbed in the form of phosphate (H PO ) is an essential but limiting macronutrient for plant growth and agricultural productivity. A comprehensive understanding of how plants respond to phosphate starvation is essential for the development of more phosphate-efficient crops. Here we employed label-free proteomics and phosphoproteomics to quantify protein-level responses to 48 h of phosphate versus phosphite (H PO ) resupply to phosphate-deprived Arabidopsis thaliana suspension cells.

View Article and Find Full Text PDF

Glycolysis is a central feature of metabolism and its regulation plays important roles during plant developmental and stress responses. Recent advances in proteomics and mass spectrometry have documented extensive and dynamic post-translational modifications (PTMs) of most glycolytic enzymes in diverse plant tissues. Protein PTMs represent fundamental regulatory events that integrate signalling and gene expression with cellular metabolic networks, and can regulate glycolytic enzyme activity, localization, protein:protein interactions, moonlighting functions, and turnover.

View Article and Find Full Text PDF

The aim of this article is to discuss approaches to diagnose and prevent unwanted proteolysis during extraction and isolation of active enzymes from plant tissues. Enzymes are protein catalysts that require great care during sample processing in order to ensure that they remain intact and fully active. Preventing artifactual enzyme modifications ex planta is of utmost importance in order to obtain biologically relevant data.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated cytosolic enzyme situated at a crucial branch point of central plant metabolism. The structure of AtPPC3, a C PEPC isozyme of the model plant Arabidopsis thaliana, in complex with the inhibitors aspartate and citrate was solved at 2.2-Å resolution.

View Article and Find Full Text PDF

The purple acid phosphatase AtPAP26 plays a central role in Pi-scavenging by Pi-starved (-Pi) Arabidopsis. Mass spectrometry (MS) of AtPAP26-S1 and AtPAP26-S2 glycoforms secreted by -Pi suspension cells demonstrated that N-glycans at Asn and Asn were modified in AtPAP26-S2 to form high-mannose glycans. A 55-kDa protein that co-purified with AtPAP26-S2 was identified as a Galanthus nivalis agglutinin-related and apple domain lectin-1 (AtGAL1; At1g78850).

View Article and Find Full Text PDF

In plants, trehalose 6-phosphate (T6P) is a key signaling metabolite that functions as both a signal and negative feedback regulator of sucrose levels. The mode of action by which T6P senses and regulates sucrose is not fully understood. Here, we demonstrate that the sucrolytic activity of RcSUS1, the dominant sucrose synthase isozyme expressed in developing castor beans, is allosterically inhibited by T6P.

View Article and Find Full Text PDF

Orthophosphate (H PO , Pi) is an essential macronutrient integral to energy metabolism as well as a component of membrane lipids, nucleic acids, including ribosomal RNA, and therefore essential for protein synthesis. The Pi concentration in the solution of most soils worldwide is usually far too low for maximum growth of crops, including rice. This has prompted the massive use of inefficient, polluting, and nonrenewable phosphorus (P) fertilizers in agriculture.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxylase (PEPC) is an important regulatory enzyme situated at a key branch point of central plant metabolism. Plant genomes encode several plant-type PEPC (PTPC) isozymes, along with a distantly related bacterial-type PEPC (BTPC). BTPC is expressed at high levels in developing castor oil seeds where it tightly interacts with co-expressed PTPC polypeptides to form unusual hetero-octameric Class-2 PEPC complexes that are desensitized to allosteric inhibition by L-malate.

View Article and Find Full Text PDF

The sucrose synthase (SUS) interactome of developing castor oilseeds (COS; Ricinus communis) was assessed using coimmunoprecipitation (co-IP) with anti-(COS RcSUS1)-IgG followed by proteomic analysis. A 41-kDa polypeptide (p41) that coimmunoprecipitated with RcSUS1 from COS extracts was identified as reversibly glycosylated polypeptide-1 (RcRGP1) by LC-MS/MS and anti-RcRGP1 immunoblotting. Reciprocal Far-western immunodot blotting corroborated the specific interaction between RcSUS1 and RcRGP1.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds () a novel, allosterically desensitized 910-kD Class-2 PEPC hetero-octameric complex, arises from a tight interaction between 107-kD plant-type PEPC and 118-kD bacterial-type (BTPC) subunits. The native Ca-dependent protein kinase (CDPK) responsible for in vivo inhibitory phosphorylation of Class-2 PEPC's BTPC subunit's at Ser-451 was highly purified from COS and identified as RcCDPK1 (XP_002526815) by mass spectrometry.

View Article and Find Full Text PDF

Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs) of secreted proteins, particularly glycosylation and phosphorylation.

View Article and Find Full Text PDF

Leucoplasts are colorless plastids of nonphotosynthetic plant tissues that support a variety of anabolic roles, particularly the biosynthesis of long-chain fatty acids in storage tissues of developing oil seeds. They also perform other important metabolic functions including the biosynthesis of amino acids and tetrapyrrole compounds. Leucoplasts use a complex set of membrane carriers and channels to actively translocate nuclear-encoded precursor proteins from the cytosol, while exchanging various metabolites with the cytosol.

View Article and Find Full Text PDF

Imported sucrose is cleaved by sucrose synthase (SUS) as a critical initial reaction in the biosynthesis of storage end-products by developing seeds. Although SUS is phosphorylated at a conserved seryl residue by an apparent CDPK (Ca-dependent protein kinase) in diverse plant tissues, the functions and mechanistic details of this process remain obscure. Thus, the native CDPK that phosphorylates RcSUS1 (Ricinus communis SUS1) at Ser in developing COS (castor oil seeds) was highly purified and identified as RcCDPK2 by MS/MS.

View Article and Find Full Text PDF