Histidine residues 44 and 48 in yeast alcohol dehydrogenase (ADH) bind to the coenzymes NAD(H) and contribute to catalysis. The individual H44R and H48Q substitutions alter the kinetics and pH dependencies, and now the roles of other ionizable groups in the enzyme were studied in the doubly substituted H44R/H48Q ADH. The substitutions make the enzyme more resistant to inactivation by diethyl pyrocarbonate, modestly improve affinity for coenzymes, and substantially decrease catalytic efficiencies for ethanol oxidation and acetaldehyde reduction.
View Article and Find Full Text PDFChem Biol Interact
January 2024
Alcohol dehydrogenase catalyzes the reversible transfer of a hydride directly from an alcohol to the nicotinamide ring of NAD to form an aldehyde and NADH, and the proton from the alcohol probably is transferred through a hydrogen-bonded system to the imidazole of His-48. Studies of the pH dependencies, and solvent and substrate isotope effects on the wild-type and the enzyme with His-48 substituted with Gln-48 were used to demonstrate a role for the proton relay system. The H48Q substitution increases affinities for NAD and NADH by ∼2-fold, suggesting that the overall protein structure is maintained.
View Article and Find Full Text PDFHis-48 in yeast alcohol dehydrogenase I (His 51 in horse liver alcohol dehydrogenase) is a highly conserved residue in the active sites of many alcohol dehydrogenases. The imidazole group of His-48 may participate in base catalysis of proton transfer as it is linked by hydrogen bonds through the 2'-hydroxyl group of the nicotinamide ribose and the hydroxyl group of Thr-45 to the hydroxyl group of the alcohol bound to the catalytic zinc. In this study, His-48 was substituted with a glutamic acid residue to determine if a carboxylate could replace imidazole or to a serine residue to determine if the exposure of the 2'-hydroxyl group of the ribose to solvent would allow proton transfer to water without base catalysis.
View Article and Find Full Text PDFEnzymes catalyze reactions by binding and orienting substrates with dynamic interactions. Horse liver alcohol dehydrogenase catalyzes hydrogen transfer with quantum-mechanical tunneling that involves fast motions in the active site. The structures and B factors of ternary complexes of the enzyme with NAD and 2,3,4,5,6-pentafluorobenzyl alcohol or NAD and 2,2,2-trifluoroethanol were determined to 1.
View Article and Find Full Text PDFX-Ray crystallography shows that the hydroxyl group of Thr-45 in the fermentative alcohol dehydrogenase (ADH1) from Saccharomyces cerevisiae is hydrogen-bonded to the hydroxyl group of the alcohol bound to the catalytic zinc and is part of a proton relay system linked to His-48. The contribution of Thr-45 to catalysis was studied with steady state kinetics of the enzyme with the T45G substitution. Affinities for coenzymes decrease by only 2-4-fold, but the turnover numbers (V/E) and catalytic efficiencies (V/KE) decrease 480-fold and 2900-fold for the oxidation of ethanol and 450-fold and 8400-fold for acetaldehyde reduction, respectively, relative to wild-type enzyme.
View Article and Find Full Text PDFArch Biochem Biophys
April 2021
Enzymes typically have high specificity for their substrates, but the structures of substrates and products differ, and multiple modes of binding are observed. In this study, high resolution X-ray crystallography of complexes with NADH and alcohols show alternative modes of binding in the active site. Enzyme crystallized with the good substrates NAD and 4-methylbenzyl alcohol was found to be an abortive complex of NADH with 4-methylbenzyl alcohol rotated to a "non-productive" mode as compared to the structures that resemble reactive Michaelis complexes with NAD and 2,2,2-trifluoroethanol or 2,3,4,5,6-pentafluorobenzyl alcohol.
View Article and Find Full Text PDFStructures of yeast alcohol dehydrogenase determined by X-ray crystallography show that the subunits have two different conformational states in each of the two dimers that form the tetramer. Apoenzyme and holoenzyme complexes relevant to the catalytic mechanism were described, but the asymmetry led to questions about the cooperativity of the subunits in catalysis. This study used cryo-electron microscopy (cryo-EM) to provide structures for the apoenzyme, two different binary complexes with NADH, and a ternary complex with NAD and 2,2,2-trifluoroethanol.
View Article and Find Full Text PDFPrevious studies showed that the L57F and F93W alcohol dehydrogenases catalyze the oxidation of benzyl alcohol with some quantum mechanical hydrogen tunneling, whereas the V203A enzyme has diminished tunneling. Here, steady-state kinetics for the L57F and F93W enzymes were studied, and microscopic rate constants for the ordered bi-bi mechanism were estimated from simulations of transient kinetics for the S48T, F93A, S48T/F93A, F93W, and L57F enzymes. Catalytic efficiencies for benzyl alcohol oxidation (/) vary over a range of ∼100-fold for the less active enzymes up to the L57F enzyme and are mostly associated with the binding of alcohol rather than the rate constants for hydride transfer.
View Article and Find Full Text PDFThe catalytic zincs in complexes of horse liver and yeast alcohol dehydrogenases (ADH) with NAD and the substrate analogue, 2,2,2-trifluoroethanol, are ligated to two cysteine residues and one histidine residue from the protein and the oxygen from the alcohol. The zinc facilitates deprotonation of the alcohol and is essential for catalysis. In the yeast apoenzyme, the zinc is coordinated to a nearby glutamic acid, which is displaced by the alcohol in the complex with NAD.
View Article and Find Full Text PDFGlu-267 is highly conserved in alcohol dehydrogenases and buried as a negatively-charged residue in a loop of the NAD coenzyme binding domain. Glu-267 might have a structural role and contribute to a rate-promoting vibration that facilitates catalysis. Substitutions of Glu-267 with histidine or asparagine residues increase the dissociation constants for the coenzymes (NAD by ∼40-fold, NADH by ∼200-fold) and significantly decrease catalytic efficiencies by 16-1200-fold various substrates and substituted enzymes.
View Article and Find Full Text PDFThe dynamics of enzyme catalysis range from the slow time scale (∼ms) for substrate binding and conformational changes to the fast time (∼ps) scale for reorganization of substrates in the chemical step. The contribution of global dynamics to catalysis by alcohol dehydrogenase was tested by substituting five different, conserved amino acid residues that are distal from the active site and located in the hinge region for the conformational change or in hydrophobic clusters. X-ray crystallography shows that the structures for the G173A, V197I, I220 (V, L, or F), V222I, and F322L enzymes complexed with NAD and an analogue of benzyl alcohol are almost identical, except for small perturbations at the sites of substitution.
View Article and Find Full Text PDFDuring catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography.
View Article and Find Full Text PDFThe substrate specificities of alcohol dehydrogenases (ADH) are of continuing interest for understanding the physiological functions of these enzymes. Ser-48 and Phe-93 have been identified as important residues in the substrate binding sites of ADHs, but more comprehensive structural and kinetic studies are required. The S48T substitution in horse ADH1E has small effects on kinetic constants and catalytic efficiency (V/K) with ethanol, but decreases activity with benzyl alcohol and affinity for 2,2,2-trifluoroethanol (TFE) and 2,3,4,5,6-pentafluorobenzyl alcohol (PFB).
View Article and Find Full Text PDFYeast alcohol dehydrogenase I is a homotetramer of subunits with 347 amino acid residues, catalyzing the oxidation of alcohols using NAD(+) as coenzyme. A new X-ray structure was determined at 3.0 Å where both subunits of an asymmetric dimer bind coenzyme and trifluoroethanol.
View Article and Find Full Text PDFThe kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.
View Article and Find Full Text PDFYeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (ADH1) is the constitutive enzyme that reduces acetaldehyde to ethanol during the fermentation of glucose. ADH1 is a homotetramer of subunits with 347 amino acid residues. A structure for ADH1 was determined by X-ray crystallography at 2.
View Article and Find Full Text PDFA role for protein dynamics in enzymatic catalysis of hydrogen transfer has received substantial scientific support, but the connections between protein structure and catalysis remain to be established. Valine residues 203 and 207 are at the binding site for the nicotinamide ring of the coenzyme in liver alcohol dehydrogenase and have been suggested to facilitate catalysis with "protein-promoting vibrations" (PPV). We find that the V207A substitution has small effects on steady-state kinetic constants and the rate of hydrogen transfer; the introduced cavity is empty and is tolerated with minimal effects on structure (determined at 1.
View Article and Find Full Text PDFPrevious studies showed that fitter yeast (Saccharomyces cerevisiae) that can grow by fermenting glucose in the presence of allyl alcohol, which is oxidized by alcohol dehydrogenase I (ADH1) to toxic acrolein, had mutations in the ADH1 gene that led to decreased ADH activity. These yeast may grow more slowly due to slower reduction of acetaldehyde and a higher NADH/NAD(+) ratio, which should decrease the oxidation of allyl alcohol. We determined steady-state kinetic constants for three yeast ADHs with new site-directed substitutions and examined the correlation between catalytic efficiency and growth on selective media of yeast expressing six different ADHs.
View Article and Find Full Text PDFStructures of horse liver alcohol dehydrogenase complexed with NAD(+) and unreactive substrate analogues, 2,2,2-trifluoroethanol or 2,3,4,5,6-pentafluorobenzyl alcohol, were determined at 100 K at 1.12 or 1.14 Å resolution, providing estimates of atomic positions with overall errors of ~0.
View Article and Find Full Text PDFThe turnover numbers and other kinetic constants for human alcohol dehydrogenase (ADH) 4 ("stomach" isoenzyme) are substantially larger (10-100-fold) than those for human class I and horse liver alcohol dehydrogenases. Comparison of the primary amino acid sequences (69% identity) and tertiary structures of these enzymes led to the suggestion that residue 317, which makes a hydrogen bond with the nicotinamide amide nitrogen of the coenzyme, may account for these differences. Ala-317 in the class I enzymes is substituted with Cys in human ADH4, and locally different conformations of the peptide backbones could affect coenzyme binding.
View Article and Find Full Text PDFAs shown by X-ray crystallography, horse liver alcohol dehydrogenase undergoes a global conformational change upon binding of NAD(+) or NADH, involving a rotation of the catalytic domain relative to the coenzyme binding domain and the closing up of the active site to produce a catalytically efficient enzyme. The conformational change requires a complete coenzyme and is affected by various chemical or mutational substitutions that can increase the catalytic turnover by altering the kinetics of the isomerization and rate of dissociation of coenzymes. The binding of NAD(+) is kinetically limited by a unimolecular isomerization (corresponding to the conformational change) that is controlled by deprotonation of the catalytic zinc-water to produce a negatively-charged zinc-hydroxide, which can attract the positively-charged nicotinamide ring.
View Article and Find Full Text PDFThe substrate specificities of yeast alcohol dehydrogenases I and II from Saccharomyces cerevisiae (SceADH1 and SceADH2) and Saccharomyces carlsbergensis (ScbADH1) were studied. For this work, the gene for the S. carlsbergensis ADH1 was cloned, sequenced and expressed.
View Article and Find Full Text PDF