Human cytomegalovirus (HCMV) is the most common cause of viral intrauterine infection. Placental infection suggests hematogenous spread and permissiveness may vary according to the age of pregnancy. We set up and investigate permissivity of early and term placenta to HCMV with an ex vivo model of placental histocultures and evaluate the activity profile of IDO.
View Article and Find Full Text PDFDuring platelet activation, phosphoinositide 3-kinases (PI3Ks) produce lipid second messengers participating in the regulation of functional responses. Here, we generated a megakaryocyte-restricted p110beta null mouse model and demonstrated a critical role of PI3Kbeta in platelet activation via an immunoreceptor tyrosine-based activation motif, the glyco-protein VI-Fc receptor gamma-chain complex, and its contribution in response to G-protein-coupled receptors. Interestingly, the production of phosphatidylinositol 3,4,5-trisphosphate and the activation of protein kinase B/Akt were strongly inhibited in p110beta null platelets stimulated either via immunoreceptor tyrosine-based activation motif or G-protein-coupled receptors.
View Article and Find Full Text PDFPlatelets are critical for normal hemostasis. Their deregulation can lead to bleeding or to arterial thrombosis, a primary cause of heart attack and ischemic stroke. Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a 5-phosphatase capable of dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate second messenger into phosphatidylinositol 3,4-bisphosphate.
View Article and Find Full Text PDFACTH-independent macronodular adrenocortical hyperplasia (AIMAH) is rare and generally presents as a sporadic disease. We describe a familial case of AIMAH with in vivo and in vitro demonstration of aberrant 5-HT4 and vasopressin adrenal receptors. Two sisters presented with clinical and biological features of mild Cushing's syndrome with bilateral macronodular adrenal enlargement on computerized tomography (CT)-scan evaluation.
View Article and Find Full Text PDFThis study was based on the hypothesis that lipid kinases in the different subcellular fractions would be differently affected by thrombin-treatment of platelets prior to subcellular fractionation. When using our previously reported method for subcellular fractionation on Percoll self-generated gradients, marker enzymes were detected as previously described. Stimulation of intact platelets with thrombin induced increased activities of PtdIns 4-kinase, PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) 3-kinase in the plasma membrane fraction.
View Article and Find Full Text PDFJ Thromb Haemost
October 2005
The dynamics of the actin cytoskeleton, largely controlled by the Rho family of small GTPases (Rho, Rac and Cdc42), is critical for the regulation of platelet responses such as shape change, adhesion, spreading and aggregation. Here, we investigated the role of adenosine diphosphate (ADP), a major co-activator of platelets, on the activation of Rac. ADP rapidly activated Rac in a dose-dependent manner and independently of GPIIb/IIIa and phosphoinositide 3-kinase.
View Article and Find Full Text PDFThe phosphoinositide metabolism that is highly controlled by a set of kinases, phosphatases and phospholipases leads to the production of several second messengers playing critical roles in intracellular signal transduction mechanisms. Recent discoveries have unraveled unexpected roles for the three phosphatidylinositol monophosphates, PtdIns(3)P, PtdIns(4)P and PtdIns(5)P, that appear now as important lipid messengers able to specifically interact with proteins. The formation of functionally distinct and independently regulated pools of phosphatidylinositol monophosphates probably contributes to the specificity of the interactions with their targets.
View Article and Find Full Text PDFDynamic connections between actin filaments and the plasma membrane are crucial for the regulation of blood platelet functions. Protein complexes associated with alphaIIbbeta3 integrin-based cytoskeleton structures are known to play a role in these processes. However, mechanisms involving lateral organizations of the plasma membrane remain to be investigated.
View Article and Find Full Text PDFJ Thromb Haemost
January 2004
The P2Y12 ADP receptor is one of the major regulators of platelet activation and the target of antithrombotic thienopyridines (ticlopidine and clopidogrel). It has been recently cloned but the signaling pathways triggered by this receptor are still poorly documented. Here, we show that stimulation of the human P2Y12 receptor stably expressed in Chinese hamster ovary cells activates two major intracellular signaling mechanisms leading either to cell proliferation or to actin cytoskeleton reorganization.
View Article and Find Full Text PDFThrombospondin-1 (TSP1) is abundantly secreted during platelet activation and plays a role in irreversible platelet aggregation. A peptide derived from the C-terminal domain of TSP1, RFYVVMWK (RFY) can activate human platelets at least in part via its binding to integrin-associated protein. Although integrin-associated protein is known to physically interact with alphaIIb/beta3, we found that this major platelet integrin had only a partial implication in RFY-mediated platelet aggregation.
View Article and Find Full Text PDFPhosphoinositides (PIs) play an essential role in diverse cellular functions. Their intracellular level is strictly regulated by specific PI kinases, phosphatases and phospholipases. Recent discoveries indicate that dysfunctions in the control of their level often lead to pathologies.
View Article and Find Full Text PDFOvarian virilizing tumors are rare and can lead to assessment difficulties because of their small size. A 41-yr-old female was referred for evaluation of hirsutism that had increased within the previous 3 yr. Menstrual cycle length was normal.
View Article and Find Full Text PDFIn this study, we characterised the mechanisms of Rac GTPase activation in human platelets stimulated by two physiological agonists, either thrombin, acting through membrane receptors coupled to heterotrimeric G-proteins, or collagen which is known to mobilise a tyrosine kinase-dependent pathway. Both agonists induced a rapid activation of Rac that was not significantly affected by the inhibition of integrin alpha(IIb)beta(3) engagement. Using pharmacological inhibitors, we found that phospholipase C activation and calcium mobilisation were essential for platelet Rac activation by either thrombin or collagen whereas protein kinase C inhibition was without effect.
View Article and Find Full Text PDFOver the last few years, many reports have extended our knowledge of the inositol lipid metabolism and brought out some exciting information about the location, the variety and the role of phosphoinositides (PIs). Besides the so-called "canonical PI pathway" leading to the production of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), the precursor of the intracellular second messengers inositol 1,4,5-trisphosphate and diacylglycerol (DAG), many other metabolic pathways have been identified to produce seven different polyphosphoinositides. Several of these quantitatively minor lipid molecules appear to be specifically involved in the control of cellular events, such as the spatial and temporal organisation of key signalling pathways, the rearrangement of the actin cytoskeleton or the intracellular vesicle trafficking.
View Article and Find Full Text PDFWe have addressed the role of Rho-kinase in the different steps of thrombin receptor agonist peptide (TRAP)-induced platelet activation. Interestingly, under physiological conditions, incubation of platelets with increasing concentrations of the specific Rho-kinase inhibitor Y-27632 resulted in a dose-dependent reversion of the aggregation induced by 10 microM TRAP, without affecting serotonin secretion. Addition of Y-27632 after three minutes of TRAP stimulation, when the maximal aggregation was reached, resulted in a rapid disaggregation of platelets.
View Article and Find Full Text PDFNeutrophil elastase (NE) upregulates the fibrinogen binding activity of the platelet integrin alpha(IIb)beta(3) through proteolysis of the alpha(IIb) subunit. This cleavage allows a strong potentiation of platelet aggregation induced by low concentrations of cathepsin G (CG), another neutrophil serine proteinase. During this activation process, we observed a strong fibrinogen binding and aggregation-dependent phosphatidylinositol 3,4-bis-phosphate (PtdIns(3,4)P(2)) accumulation.
View Article and Find Full Text PDFFcgammaRIIA, the only Fcgamma receptor present in platelets, is involved in heparin-associated thrombocytopenia (HIT). Recently, adenosine diphosphate (ADP) has been shown to play a major role in platelet activation and aggregation induced by FcgammaRIIA cross-linking or by sera from HIT patients. Herein, we investigated the mechanism of action of ADP as a cofactor in FcgammaRIIA-dependent platelet activation, which is classically known to involve tyrosine kinases.
View Article and Find Full Text PDFPlatelets are critical for the maintenance of the integrity of the vascular system and are the first line of defence against haemorrhage. When they encounter a subendothelial matrix exposed by injury to a vessel, platelets adhere, are activated, and become adhesive for other platelets so that they aggregate. alpha IIb/beta 3, a platelet-specific integrin, is largely prominent amongst the adhesion receptors and is essential for platelet aggregation.
View Article and Find Full Text PDFSH2-containing inositol-5-phosphatase 1 (SHIP1) was originally identified as a 145 kDa protein that became tyrosine-phosphorylated in response to multiple cytokines. It is now well established that SHIP1 is specifically expressed in haemopoietic cells and is important as a negative regulator of signalling. We found recently that SHIP1 was present in human blood platelets as an Ins(1,3,4, 5)P(4)-phosphatase and a PtdIns(3,4,5)P(3)-5-phosphatase that became tyrosine-phosphorylated and was relocated to the cytoskeleton in an integrin-dependent manner.
View Article and Find Full Text PDFPretreatment of intact platelets with cytochalasin D prevented actin polymerization and cytoskeleton reorganization induced by thrombin, but did not affect platelet aggregation. Under these conditions, synthesis of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) stimulated by thrombin was strongly inhibited, while production of phosphatidic acid was unaffected. The inhibitory effect of cytochalasin D was not observed when platelet aggregation was prevented by the RGDS peptide.
View Article and Find Full Text PDFAlthough adenosine diphosphate (ADP), per se, is a weak platelet agonist, its role as a crucial cofactor in human blood platelet functions has now been clearly demonstrated in vitro and in vivo. The molecular basis of the ADP-induced platelet activation is starting to be understood since the discovery that 2 separate P2 purinergic receptors may be involved simultaneously in the activation process. However, little is known about how ADP plays its role as a cofactor in platelet activation and which signaling pathway initiated by a specific agonist can be modulated by the released ADP.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
October 1999
We have studied a 20-yr-old male patient with adrenal hypoplasia congenita and hypogonadotropic hypogonadism (HH) due to a C to A transversion at nucleotide 825 in the DAX-1 gene, resulting in a stop codon at position 197. The same mutation was detected in his affected first cousin (adrenal hypoplasia congenita and HH) and in a heterozygous state in their carrier mothers. The patient had had acute adrenal insufficiency at the age of 2 yr and 6 months, bilateral cryptorchidism corrected surgically at the age of 12 yr, and failure of spontaneous puberty.
View Article and Find Full Text PDFBruton tyrosine kinase (Btk) plays a crucial role in the differentiation of B lymphocytes and belongs to the group of Tec kinases, which are characterised by the presence of a pleckstrin homology domain. Here we show that Btk is activated and undergoes tyrosine phosphorylation upon challenge of platelet thrombin receptor, these responses requiring engagement of alphaIIb/beta3 integrin and phosphoinositide 3-kinase activity. These data unravel a novel signalling pathway involving Btk downstream of an adhesive receptor via a complex regulation implicating the products of phosphoinositide 3-kinase, which might act to anchor Btk at the membrane.
View Article and Find Full Text PDFA number of reports suggest that under different conditions leading to cytoskeleton reorganization the GTPase Rac1 and possibly RhoA are downstream targets of phosphoinositide 3-kinase (PI 3-kinase). In order to gain more insight into this particular signaling pathway, we have addressed the question of a possible direct interaction of PI 3-kinase products with the Rho family GTPases RhoA, Rac1, and Cdc42. Using recombinant proteins, we found that Rac1 and, to a lesser extent, RhoA but not Cdc42 were capable to selectively bind to phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) in a mixture of crude brain phosphoinositides.
View Article and Find Full Text PDF