The transition from planar (2D) to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.
View Article and Find Full Text PDFElectron-assisted oxidation of Co-Si-based focused electron beam induced deposition (FEBID) materials is shown to form a 2-4 nm metal oxide surface layer on top of an electrically insulating silicon oxide layer less than 10 nm thick. Differences between thermal and electron-induced oxidation on the resulting microstructure are illustrated.
View Article and Find Full Text PDFElectron-induced fragmentation of the HFeCo(CO) precursor allows direct-write fabrication of 3D nanostructures with metallic contents of up to >95 at %. While microstructure and composition determine the physical and functional properties of focused electron beam-induced deposits, they also provide fundamental insights into the decomposition process of precursors, as elaborated in this study based on EDX and TEM. The results provide solid information suggesting that different dominant fragmentation channels are active in single-spot growth processes for pillar formation.
View Article and Find Full Text PDFOne of the challenges of nanoelectromechanical systems (NEMS) is the effective transduction of the tiny resonators. Vertical structures, such as nanomechanical pillar resonators, which are exploited in optomechanics, acoustic metamaterials, and nanomechanical sensing, are particularly challenging to transduce. Existing electromechanical transduction methods are ill-suited as they put constraints on the pillars' material and do not enable a transduction of freestanding pillars.
View Article and Find Full Text PDFMagnetic force microscopy (MFM) is a powerful extension of atomic force microscopy (AFM), which mostly uses nano-probes with functional coatings for studying magnetic surface features. Although well established, additional layers inherently increase apex radii, which reduce lateral resolution and also contain the risk of delamination, rendering such nano-probes doubtful or even useless. To overcome these limitations, we now introduce the additive direct-write fabrication of magnetic nano-cones via focused electron beam-induced deposition (FEBID) using an HCoFe(CO) precursor.
View Article and Find Full Text PDF3D nanoprinting, using focused electron beam-induced deposition, is prone to a common structural artifact arising from a temperature gradient that naturally evolves during deposition, extending from the electron beam impact region (BIR) to the substrate. Inelastic electron energy loss drives the Joule heating and surface temperature variations lead to precursor surface concentration variations due, in most part, to temperature-dependent precursor surface desorption. The result is unwanted curvature when prescribing linear segments in 3D objects, and thus, complex geometries contain distortions.
View Article and Find Full Text PDF3D nanoprinting via focused electron beam induced deposition (FEBID) is applied for fabrication of all-metal nanoprobes for atomic force microscopy (AFM)-based electrical operation modes. The 3D tip concept is based on a hollow-cone (HC) design, with all-metal material properties and apex radii in the sub-10 nm regime to allow for high-resolution imaging during morphological imaging, conductive AFM (CAFM) and electrostatic force microscopy (EFM). The study starts with design aspects to motivate the proposed HC architecture, followed by detailed fabrication characterization to identify and optimize FEBID process parameters.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2022
Focused electron beam induced deposition (FEBID) is one of the few additive, direct-write manufacturing techniques capable of depositing complex 3D nanostructures. In this work, we explore post-growth electron beam curing (EBC) of such platinum-based FEBID deposits, where free-standing, sheet-like elements were deformed in a targeted manner by local irradiation without precursor gas present. This process diminishes the volumes of exposed regions and alters nano-grain sizes, which was comprehensively characterized by SEM, TEM and AFM and complemented by Monte Carlo simulations.
View Article and Find Full Text PDFWood-based materials such as composites or laminates play an important role in today's furniture industry, especially in manufacturing high-quality kitchen and dining room furniture. One important aspect after fabrication is the investigation of these materials to derive quality metrics such as surface stain and scuff resistance. Current sample preparation methods are mostly straightforward and rely on cutting and grinding the materials under test, including sensitive wood substrates.
View Article and Find Full Text PDFThe material composition and electrical properties of nanostructures obtained from focused electron beam-induced deposition (FEBID) using manganese and vanadium carbonyl precursors have been investigated. The composition of the FEBID deposits has been compared with thin films derived by the thermal decomposition of the same precursors in chemical vapor deposition (CVD). FEBID of V(CO) gives access to a material with a V/C ratio of 0.
View Article and Find Full Text PDFCellulose-water interactions are crucial to understand biological processes as well as to develop tailor made cellulose-based products. However, the main challenge to study these interactions is the diversity of natural cellulose fibers and alterations in their supramolecular structure. Here, we study the humidity response of different, well-defined, ultrathin cellulose films as a function of industrially relevant treatments using different techniques.
View Article and Find Full Text PDFHigh-fidelity 3D printing of nanoscale objects is an increasing relevant but challenging task. Among the few fabrication techniques, focused electron beam induced deposition (FEBID) has demonstrated its high potential due to its direct-write character, nanoscale capabilities in 3D space and a very high design flexibility. A limitation, however, is the low fabrication speed, which often restricts 3D-FEBID for the fabrication of single objects.
View Article and Find Full Text PDFHallux rigidus is degenerative arthritis of the first metatarsophalangeal joint characterized by pain and stiffness in the joint with limitation of motion and functional impairment. Recently, bone grafts have been introduced in orthopedic procedures, namely osteosynthesis and arthrodesis. Allografts can induce bone formation, provide support for vascular and bone ingrowth and have a low risk of immunological rejection.
View Article and Find Full Text PDFMicromachines (Basel)
January 2021
Additive, direct-write manufacturing via a focused electron beam has evolved into a reliable 3D nanoprinting technology in recent years. Aside from low demands on substrate materials and surface morphologies, this technology allows the fabrication of freestanding, 3D architectures with feature sizes down to the sub-20 nm range. While indispensably needed for some concepts (e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
The direct-write fabrication of freestanding nanoantennas for plasmonic applications is a challenging task, as demands for overall morphologies, nanoscale features, and material qualities are very high. Within the small pool of capable technologies, three-dimensional (3D) nanoprinting via focused electron beam-induced deposition (FEBID) is a promising candidate due to its design flexibility. As FEBID materials notoriously suffer from high carbon contents, the chemical postgrowth transfer into pure metals is indispensably needed, which can severely harm or even destroy FEBID-based 3D nanoarchitectures.
View Article and Find Full Text PDFBackground: Ethyl pyruvate (EP), the ethyl ester of pyruvate, has proven antiinflammatory and antioxidative properties. Additionally, anticoagulant properties have been suggested recently. EP, therefore, is a potentially antiatherosclerotic drug.
View Article and Find Full Text PDFThe cellulosome is a supramolecular multienzymatic protein complex that functions as a biological nanomachine of cellulosic biomass degradation. How the megadalton-size cellulosome adapts to a solid substrate is central to its mechanism of action and is also key for its efficient use in bioconversion applications. We report time-lapse visualization of crystalline cellulose degradation by individual cellulosomes from by atomic force microscopy.
View Article and Find Full Text PDFThis article reviews the state-of-the -art of mechanical material properties and measurement methods of nanostructures obtained by two nanoscale additive manufacturing methods: gas-assisted focused electron and focused ion beam-induced deposition using volatile organic and organometallic precursors. Gas-assisted focused electron and ion beam-induced deposition-based additive manufacturing technologies enable the direct-write fabrication of complex 3D nanostructures with feature dimensions below 50 nm, pore-free and nanometer-smooth high-fidelity surfaces, and an increasing flexibility in choice of materials via novel precursors. We discuss the principles, possibilities, and literature proven examples related to the mechanical properties of such 3D nanoobjects.
View Article and Find Full Text PDFThe present study investigates the drug release-governing microstructural properties of melt spray congealed microspheres encapsulating the drug crystals in the matrix of glyceryl behenate and poloxamer (pore former). The solid-state, morphology, and micromeritics of the microspheres were characterized, before and after annealing, using calorimetry, X-ray scattering, porosimetry, scanning electron microscopy, and, NMR diffusometry. The in vitro drug release from and water uptake by the microspheres were obtained.
View Article and Find Full Text PDFMicromachines (Basel)
December 2019
Scanning probe microscopy (SPM) has become an essential surface characterization technique in research and development. By concept, SPM performance crucially depends on the quality of the nano-probe element, in particular, the apex radius. Now, with the development of advanced SPM modes beyond morphology mapping, new challenges have emerged regarding the design, morphology, function, and reliability of nano-probes.
View Article and Find Full Text PDFA promising 3D nanoprinting method, used to deposit nanoscale mesh style objects, is prone to distortions which limits the complexity and variety of deposit geometries. The method, focused electron beam-induced deposition (FEBID), uses a nanoscale electron probe for continuous dissociation of surface adsorbed precursor molecules which drives highly localized deposition. Three dimensional objects are deposited using a 2D digital scanning pattern-the digital beam speed controls deposition into the third, or out-of-plane dimension.
View Article and Find Full Text PDFAccessing the thermal properties of materials or even full devices is a highly relevant topic in research and development. Along with the ongoing trend toward smaller feature sizes, the demands on appropriate instrumentation to access surface temperatures with high thermal and lateral resolution also increase. Scanning thermal microscopy is one of the most powerful technologies to fulfill this task down to the sub-100 nm regime, which, however, strongly depends on the nanoprobe design.
View Article and Find Full Text PDFAn artifact limiting the reproduction of three-dimensional (3D) designs using nanoprinting has been quantified. Beam-induced heating was determined through complementary experiments, models, and simulations to affect the deposition rate during the 3D nanoprinting of mesh objects using focused electron beam induced deposition (FEBID). The mesh objects are constructed using interconnected nanowires.
View Article and Find Full Text PDFThis study investigates flexible (polyamide 6.6 PA-6.6, polyethylene terephthalate PET, Cu, Al, and Ni foils) and, for comparison, stiff substrates (silicon wafers and glass) differing in, for example, in surface free energy and surface roughness and their ability to host cellulose-based thin films.
View Article and Find Full Text PDF