Proc Natl Acad Sci U S A
January 2025
The origin of complex life and the evolution of terrestrial ecosystems are fundamental aspects of the natural history on Earth. Here, we present evidence for a protracted stabilization of the Earth's ozone layer. The destruction of atmospheric ozone today is inherently linked to the cycling of marine and atmospheric iodine.
View Article and Find Full Text PDFCarbon removal from the atmosphere is needed to keep global mean temperature increases below 2 °C. Here, we develop a model to explore how alkalinity production through enhanced iron sulfide formation in low-oxygen aquatic environments, such as aquaculture systems, could offer a cost-effective means of CO removal. We show that enhanced sulfide burial through the supply of reactive iron to surface sediments may be able to capture up to a hundred million tonnes of CO per year, particularly in countries with the highest number of fish farms, such as China and Indonesia.
View Article and Find Full Text PDFAtmospheric oxygen levels are traditionally viewed to have been relatively stable throughout Earth's history with several-step increases. Emerging evidence, however, suggests extremely dynamic atmospheric oxygen levels through large swaths of Earth's history. Here, we provide a new perspective on atmospheric oxygen evolution using a dynamical analysis to explore the relative importance of previously proposed feedbacks on the global oxygen and carbon cycles.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2024
Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca and Mg) from crushed basalt applied each fall over 4 y (50 t ha y) gave a conservative time-integrated cumulative CDR potential of 10.
View Article and Find Full Text PDFEnhanced rock weathering (ERW) is a promising scalable and cost-effective carbon dioxide removal (CDR) strategy with significant environmental and agronomic co-benefits. A major barrier to large-scale implementation of ERW is a robust monitoring, reporting, and verification (MRV) framework. To successfully quantify the amount of carbon dioxide removed by ERW, MRV must be accurate, precise, and cost-effective.
View Article and Find Full Text PDFEnhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy for combating climate change. The CDR potentials of ERW have been assessed at the process and national/global levels, but the environmental and economic implications of ERW have not been fully quantified for U.S.
View Article and Find Full Text PDFAvoiding many of the most severe consequences of anthropogenic climate change in the coming century will very likely require the development of "negative emissions technologies"-practices that lead to net carbon dioxide removal (CDR) from Earth's atmosphere. However, feedbacks within the carbon cycle place intrinsic limits on the long-term impact of CDR on atmospheric CO that are likely to vary across CDR technologies in ways that are poorly constrained. Here, we use an ensemble of Earth system models to provide new insights into the efficiency of CDR through enhanced rock weathering (ERW) by explicitly quantifying long-term storage of carbon in the ocean during ERW relative to an equivalent modulated emissions scenario.
View Article and Find Full Text PDFMany lines of inorganic geochemical evidence suggest transient "whiffs" of environmental oxygenation before the Great Oxidation Event (GOE). Slotznick assert that analyses of paleoredox proxies in the Mount McRae Shale, Western Australia, were misinterpreted and hence that environmental O levels were persistently negligible before the GOE. We find these arguments logically flawed and factually incomplete.
View Article and Find Full Text PDFCalcium carbonate formation is the primary pathway by which carbon is returned from the ocean-atmosphere system to the solid Earth. The removal of dissolved inorganic carbon from seawater by precipitation of carbonate minerals-the marine carbonate factory-plays a critical role in shaping marine biogeochemical cycling. A paucity of empirical constraints has led to widely divergent views on how the marine carbonate factory has changed over time.
View Article and Find Full Text PDFThe Neoproterozoic carbonate record contains multiple carbon isotope anomalies, which are the subject of intense debate. The largest of these anomalies, the Shuram excursion (SE), occurred in the mid-Ediacaran (~574-567 Ma). Accurately reconstructing marine redox landscape is a clear path toward making sense of the mechanism that drives this δ C anomaly.
View Article and Find Full Text PDFPhosphorus (P) is typically considered to be the ultimate limiting nutrient for Earth's biosphere on geologic timescales. As P is monoisotopic, its sedimentary enrichment can provide some insights into how the marine P cycle has changed through time. A previous compilation of shale P enrichments argued for a significant change in P cycling during the Ediacaran Period (635-541 Ma).
View Article and Find Full Text PDFMost Neoproterozoic iron formations (NIF) are closely associated with global or near-global "Snowball Earth" glaciations. Increasingly, however, studies indicate that some NIFs show no robust evidence of glacial association. Many aspects of non-glacial NIF genesis, including the paleo-environmental setting, Fe(II) source, and oxidation mechanisms, are poorly understood.
View Article and Find Full Text PDFIn the wake of rapid CO release tied to the emplacement of the Siberian Traps, elevated temperatures were maintained for over five million years during the end-Permian biotic crisis. This protracted recovery defies our current understanding of climate regulation via the silicate weathering feedback, and hints at a fundamentally altered carbon and silica cycle. Here, we propose that the development of widespread marine anoxia and Si-rich conditions, linked to the collapse of the biological silica factory, warming, and increased weathering, was capable of trapping Earth's system within a hyperthermal by enhancing ocean-atmosphere CO recycling via authigenic clay formation.
View Article and Find Full Text PDFEarth's earliest fossils of complex macroscopic life are recorded in Ediacaran-aged siliciclastic deposits as exceptionally well-preserved three-dimensional casts and molds, known as "Ediacara-style" preservation. Ediacara-style fossil assemblages commonly include both macrofossils of the enigmatic Ediacara Biota and associated textural impressions attributed to microbial matgrounds that were integral to the ecology of Ediacara communities. Here, we use an experimental approach to interrogate to what extent the presence of mat-forming microorganisms was likewise critical to the Ediacara-style fossilization of these soft-bodied organisms.
View Article and Find Full Text PDFPiecing together the history of carbon (C) perturbation events throughout Earth’s history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO2) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state.
View Article and Find Full Text PDFEarth's carbon cycle is strongly influenced by subduction of sedimentary material into the mantle. The composition of the sedimentary subduction flux has changed considerably over Earth's history, but the impact of these changes on the mantle carbon cycle is unclear. Here, we show that the carbon isotopes of kimberlite magmas record a fundamental change in their deep-mantle source compositions during the Phanerozoic Eon.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2022
Earth's surface has undergone a protracted oxygenation, which is commonly assumed to have profoundly affected the biosphere. However, basic aspects of this history are still debated-foremost oxygen (O) levels in the oceans and atmosphere during the billion years leading up to the rise of algae and animals. Here we use isotope ratios of iron (Fe) in ironstones-Fe-rich sedimentary rocks deposited in nearshore marine settings-as a proxy for O levels in shallow seawater.
View Article and Find Full Text PDFDirect evidence of intense chemical weathering induced by volcanism is rare in sedimentary successions. Here, we undertake a multiproxy analysis (including organic carbon isotopes, mercury (Hg) concentrations and isotopes, chemical index of alteration (CIA), and clay minerals) of two well-dated Triassic-Jurassic (T-J) boundary sections representing high- and low/middle-paleolatitude sites. Both sections show increasing CIA in association with Hg peaks near the T-J boundary.
View Article and Find Full Text PDFReconstructing the history of biological productivity and atmospheric oxygen partial pressure (O) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating O and productivity during the Proterozoic. O-MIF, reported as Δ'O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes.
View Article and Find Full Text PDFThe Siberian Traps large igneous province (STLIP) is commonly invoked as the primary driver of global environmental changes that triggered the end-Permian mass extinction (EPME). Here, we explore the contributions of coeval felsic volcanism to end-Permian environmental changes. We report evidence of extreme Cu enrichment in the EPME interval in South China.
View Article and Find Full Text PDFOcean dynamics in the equatorial Pacific drive tropical climate patterns that affect marine and terrestrial ecosystems worldwide. How this region will respond to global warming has profound implications for global climate, economic stability and ecosystem health. As a result, numerous studies have investigated equatorial Pacific dynamics during the Pliocene (5.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2021
Marine dissolved organic carbon (DOC), the largest pool of reduced carbon in the oceans, plays an important role in the global carbon cycle and contributes to the regulation of atmospheric oxygen and carbon dioxide abundances. Despite its importance in global biogeochemical cycles, the long-term history of the marine DOC reservoir is poorly constrained. Nonetheless, significant changes to the size of the oceanic DOC reservoir through Earth's history have been commonly invoked to explain changes to ocean chemistry, carbon cycling, and marine ecology.
View Article and Find Full Text PDF