Publications by authors named "Planat-Benard Valerie"

The decline in regeneration efficiency after birth in mammals is a significant roadblock for regenerative medicine in tissue repair. We previously developed a computational agent based-model (ABM) that recapitulates mechanical interactions between cells and the extracellular-matrix (ECM), to investigate key drivers of tissue repair in adults. Time calibration alongside a parameter sensitivity analysis of the model suggested that an early and transient decrease in ECM cross-linking guides tissue repair toward regeneration.

View Article and Find Full Text PDF

Introduction And Aims: Periodontitis, the main cause of tooth loss in adults, is a public health concern; its incidence increases with age, and its prevalence increases with increasing life expectancy of the population. Innovative therapies such as cell therapy represent promising future solutions for guided tissue regeneration. However, these therapies may be associated with fears and mistrust from the general public.

View Article and Find Full Text PDF

This article brings a new perspective on oral physiology by presenting the oral organ as an integrated entity within the entire organism and its surrounding environment. Rather than considering the mouth solely as a collection of discrete functions, this novel approach emphasizes its role as a dynamic interphase, supporting interactions between the body and external factors. As a resilient ecosystem, the equilibrium of mouth ecological niches is the result of a large number of interconnected factors including the heterogeneity of different oral structures, diversity of resources, external and internal pressures and biological actors.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on optimizing a platelet-lysate-based fibrin hydrogel (PLFH) to serve as a carrier for adipose-derived mesenchymal stromal cells (ASC) to help regenerate tissue lesions.
  • Researchers tested the biomechanical properties and cell viability of PLFH both in vitro and in vivo, finding that it supports ASC migration, growth, and viability.
  • Comprehensive safety assessments in mice showed that PLFH/ASC combinations are safe, biodegradable, and do not harm non-target tissues, indicating potential for future clinical use in human therapies.
View Article and Find Full Text PDF

Periostin, involved in extracellular matrix development and support, has been shown to be elevated in senescent tissues and fibrotic states, transversal signatures of aging. We aimed to explore associations between plasma periostin and physical and cognitive capacity evolution among older adults. Our hypothesis was that higher levels of plasma periostin will be associated with worse physical and mental capacities along time.

View Article and Find Full Text PDF

Traditional thin sectioning microscopy of large bone and dental tissue samples using demineralization may disrupt structure morphologies and even damage soft tissues, thus compromising the histopathological investigation. Here, we developed a synergistic and original framework on thick sections based on wide-field multi-fluorescence imaging and spectral Principal Component Analysis (sPCA) as an alternative, fast, versatile, and reliable solution, suitable for highly mineralized tissue structure sustain and visualization. Periodontal 2-mm thick sections were stained with a solution containing five fluorescent dyes chosen for their ability to discriminate close tissues, and acquisitions were performed with a multi-zoom macroscope for blue, green, red, and NIR (near-infrared) emissions.

View Article and Find Full Text PDF

Background: Periodontitis is a chronic inflammatory disease characterized by the loss of tooth-supporting tissues (or periodontium) leading to the formation of periodontal pocket then to tooth loss. Conventional therapies that involve tooth root debridement are still disappointing because they are more centered on periodontal repair than disease pathophysiology causes. The meta-analysis we present here focused on the results of experimental studies that investigated periodontal mesenchymal stromal cells (MSCs) therapy, a promising strategy to regenerate tissue, given to their immunomodulatory and trophic properties.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are currently widely used in cell based therapy regarding to their remarkable efficacy in controlling the inflammatory status in patients. Despite recent progress and encouraging results, inconstant therapeutic benefits are reported suggesting that significant breakthroughs in the understanding of MSCs immunomodulatory mechanisms of action remains to be investigated and certainly apprehended from original point of view. This review will focus on the recent findings regarding MSCs close relationship with the innate immune compartment, i.

View Article and Find Full Text PDF

Introduction: Many pathological conditions may benefit from cell therapy using mesenchymal stromal cells, particularly from adipose tissue (ASCs). Cells may be grafted in an environment with a remnant polymicrobial component. The aim is to investigate the behavior of ASCs when brought in contact with a large panel of bacteria.

View Article and Find Full Text PDF

Cold Atmospheric Plasma (CAP) is a novel promising tool developed in several biomedical applications such as cutaneous wound healing or skin cancer. Nevertheless, in vitro studies are lacking regarding to CAP effects on cellular actors involved in healthy skin healing and regarding to the mechanism of action. In this study, we investigated the effect of a 3 minutes exposure to CAP-Helium on human dermal fibroblasts and Adipose-derived Stromal Cells (ASC) obtained from the same tissue sample.

View Article and Find Full Text PDF

Current treatment of periodontitis is still associated with a high degree of variability in clinical outcomes. Recent advances in regenerative medicine by mesenchymal cells, including adipose stromal cells (ASC) have paved the way to improved periodontal regeneration (PD) but little is known about the biological processes involved. Here, we aimed to use syngeneic ASCs for periodontal regeneration in a new, relevant, bacteria-induced periodontitis model in mice.

View Article and Find Full Text PDF

Background: Adipose-derived mesenchymalstromal cells (ASC) are currently tested in regenerative medicine to promote tissue reconstruction after injury. Regardingautologous purpose, the possible loss of therapeutic function and cell properties during aging have been questioned in adults. To date no reliable information is available concerning ASC from pediatric patients and a better knowledge is required for clinical applications.

View Article and Find Full Text PDF

Background Aims: Using innovative tools derived from social network analysis, the aims of this study were (i) to decipher the spatial and temporal structure of the research centers network dedicated to the therapeutic uses of mesenchymal stromal cells (MSCs) and (ii) to measure the influence of fields of applications, cellular sources and industry funding on network topography.

Methods: From each trial using MSCs reported on ClinicalTrials.gov, all research centers were extracted.

View Article and Find Full Text PDF

Unlabelled: We aim to provide an innovative, comprehensive way of mapping the profusion of stem cell-based clinical trials registered at ClinicalTrials.gov to explore the diversity of the fields of application and the temporal complexity of the domain. We used a chord diagram and phylogenetic-like tree visualizations to assist in data mining and knowledge discovery.

View Article and Find Full Text PDF

Objectives/hypothesis: Adipose derived stromal cells (ASCs) are abundant and easy to prepare. Such cells may be useful for treating severe vocal disturbance caused by acute vocal fold scars.

Study Design: Prospective animal experiments with controls.

View Article and Find Full Text PDF

As part of a program targeted at developing a resorbable valved tube for replacement of the right ventricular outflow tract, we compared three biopolymers (polyurethane [PU], polyhydroxyalkanoate (the poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) [PHBVV]), and polydioxanone [PDO]) and two biofunctionalization techniques (using adipose-derived stem cells [ADSCs] or the arginine-glycine-aspartate [RGD] peptide) in a rat model of partial inferior vena cava (IVC) replacement. Fifty-three Wistar rats first underwent partial replacement of the IVC with an acellular electrospun PDO, PU, or PHBVV patch, and 31 nude rats subsequently underwent the same procedure using a PDO patch biofunctionalized either by ADSC or RGD. Results were assessed both in vitro (proliferation and survival of ADSC seeded onto the different materials) and in vivo by magnetic resonance imaging (MRI), histology, immunohistochemistry [against markers of vascular cells (von Willebrand factor [vWF], smooth muscle actin [SMA]), and macrophages ([ED1 and ED2] immunostaining)], and enzyme-linked immunosorbent assay (ELISA; for the expression of various cytokines and inducible NO synthase).

View Article and Find Full Text PDF

We previously reported that adipose tissue could generate cardiomyocyte-like cells from crude stromal vascular fraction (SVF) in vitro that improved cardiac function in a myocardial infarction context. However, it is not clear whether these adipose-derived cardiomyogenic cells (AD-CMG) constitute a homogenous population and if AD-CMG progenitors could be isolated as a pure population from the SVF of adipose tissue. This study aims to characterize the different cell types that constitute myogenic clusters and identify the earliest AD-CMG progenitors in vitro for establishing a complete phenotype and use it to sort AD-CMG progenitors from crude SVF.

View Article and Find Full Text PDF

Periodontitis is a chronic infectious disease of the soft and hard tissues supporting the teeth. Recent advances in regenerative medicine and stem cell biology have paved the way for periodontal tissue engineering. Mesenchymal stromal cells (MSCs) delivered in situ to periodontal defects may exert their effects at multiple levels, including neovascularization, immunomodulation, and tissue regeneration.

View Article and Find Full Text PDF

Background Aims: Non-revascularizable critical limb ischemia (CLI) is the most severe stage of peripheral arterial disease, with no therapeutic option. Extensive preclinical studies have demonstrated that adipose-derived stroma cell (ASC) transplantation strongly improves revascularization and tissue perfusion in ischemic limbs. This study, named ACellDREAM, is the first phase I trial to evaluate the feasibility and safety of intramuscular injections of autologous ASC in non-revascularizable CLI patients.

View Article and Find Full Text PDF

Aims: Few studies have assessed the effects of cell therapy in non-ischaemic cardiomyopathies which, however, contribute to a large number of cardiac failures. Assuming that such conditions are best suited for a global delivery of cells, we assessed the effects of epicardially delivered adipose tissue-derived stroma cell (ADSC) sheets in a mouse model of dilated cardiomyopathy based on cardiac-specific and tamoxifen-inducible invalidation of serum response factor.

Methods And Results: Three weeks after tamoxifen administration, the function of the left ventricle (LV) was assessed by echocardiography.

View Article and Find Full Text PDF

Both enzymatic dissociation of cells prior to needle-based injections and poor vascularization of myocardial infarct areas are two important contributors to cell death and impede the efficacy of cardiac cell therapy. Because these limitations could be overcome by scaffolds ensuring cell cohesiveness and codelivery of angiogenic cells, we used a chronic rat model of myocardial infarction to assess the long-term (6 months) effects of the epicardial delivery of a composite collagen-based patch harboring both cardiomyogenesis-targeted human embryonic SSEA-1(+) (stem cell-derived stage-specific embryonic antigen-1 positive) cardiovascular progenitors and autologous (rat) adipose tissue-derived angiogenesis-targeted stromal cells (n = 27). Cell-free patches served as controls (n = 28).

View Article and Find Full Text PDF

Adipose stroma/stem cells (ASC) represent an ideal source of autologous cells for cell-based therapy. Their transplantation enhances neovascularization after experimental ischemic injury. Aging is associated with a progressive decrease in the regenerative potential of mesenchymal stem cells (MSCs) from bone marrow.

View Article and Find Full Text PDF

Transplantation of allogeneic human embryonic stem cell-derived cardiac progenitors triggers an immune response. We assessed whether this response could be modulated by the concomitant use of adipose-derived stromal cells (ADSC). Peripheral blood mononuclear cells were collected from 40 patients with coronary artery disease (CAD) and nine healthy controls.

View Article and Find Full Text PDF

In adults, adipose tissue is abundant and can be easily sampled using liposuction. Largely involved in obesity and associated metabolic disorders, it is now described as a reservoir of immature stromal cells. These cells, called adipose-derived stromal cells (ADSCs) must be distinguished from the crude stromal vascular fraction (SVF) obtained after digestion of adipose tissue.

View Article and Find Full Text PDF