Publications by authors named "Plaitakis A"

Article Synopsis
  • - Human evolution involved significant brain growth and unique cognitive abilities, marked by special adaptations in synaptic transmission and energy use in the brain.
  • - A specific gene, hGDH2, evolved in our common ancestor with apes, enhancing glutamate metabolism and playing a key role in strengthening synaptic connections, notably in vital brain areas linked to cognition.
  • - Research with transgenic mice shows that hGDH2 boosts synaptic plasticity and neuron-glia communication, which likely supports enhanced memory and complex cognitive functions in humans.
View Article and Find Full Text PDF

The human brain is characterized by the upregulation of synaptic, mainly glutamatergic, transmission, but its evolutionary origin(s) remain elusive. Here we approached this fundamental question by studying mice transgenic (Tg) for , a human gene involved in glutamate metabolism that emerged in the hominoid and evolved concomitantly with brain expansion. We demonstrate that Tg mice express the human enzyme in hippocampal astrocytes and CA1-CA3 pyramidal neurons.

View Article and Find Full Text PDF

Glutamate dehydrogenase (GDH) interconverts glutamate to a-ketoglutarate and ammonia, interconnecting amino acid and carbohydrate metabolism. In humans, two functional GDH genes, and , encode for hGDH1 and hGDH2, respectively. evolved from retrotransposition of the gene in the common ancestor of modern apes.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed 196 participants from the Cretan Aging Cohort, focusing on genetic variants associated with Alzheimer's disease (AD) and mild cognitive impairment (MCI).
  • The research found a significant prevalence of the APOE ε4 allele in AD patients compared to cognitively normal controls and identified additional genetic variants linked to both AD and other neurodegenerative conditions.
  • Notably, a specific variant in the GLUD2 gene appeared to be less common in AD patients, hinting at a potential protective effect, although further studies are needed to confirm these results.
View Article and Find Full Text PDF

Background And Objectives: Our goal was to study hereditary transthyretin-related amyloidosis (hATTR) in Crete, Greece.

Methods: We aimed at ascertaining all hATTR cases in Crete, an island of 0.62 million people.

View Article and Find Full Text PDF

Mammalian glutamate dehydrogenase (hGDH1 in human cells) interconverts glutamate to α-ketoglutarate and ammonia while reducing NAD(P) to NAD(P)H. During primate evolution, humans and great apes have acquired hGDH2, an isoenzyme that underwent rapid evolutionary adaptation concomitantly with brain expansion, thereby acquiring unique catalytic and regulatory properties that permitted its function under conditions inhibitory to its ancestor hGDH1. Although the 3D-structures of GDHs, including hGDH1, have been determined, attempts to determine the hGDH2 structure were until recently unsuccessful.

View Article and Find Full Text PDF

Glutamate dehydrogenase 1 (GDH1) contributes to glucose-stimulated insulin secretion in murine β-cells, but not to basic insulin release. The implications of these findings for human biology are unclear as humans have two GDH-specific enzymes: hGDH1 (GLUD1-encoded) and hGDH2 (GLUD2-encoded), a novel enzyme that is highly activated by ADP and L-leucine. Here we studied in vivo glucose homeostasis in transgenic (Tg) mice generated by inserting the GLUD2 gene and its putative regulatory elements into their genome.

View Article and Find Full Text PDF

Our aim was to explore the burden of dementia in the Cretan Aging Cohort, comprised of 3140 persons aged ≥60 years (56.8% women, 5.8 ± 3.

View Article and Find Full Text PDF

Human evolution is characterized by brain expansion and up-regulation of genes involved in energy metabolism and synaptic transmission, including the glutamate signaling pathway. Glutamate is the excitatory transmitter of neural circuits sub-serving cognitive functions, with glutamate-modulation of synaptic plasticity being central to learning and memory. GLUD2 is a novel positively-selected human gene involved in glutamatergic transmission and energy metabolism that underwent rapid evolutionary adaptation concomitantly with prefrontal cortex enlargement.

View Article and Find Full Text PDF

Glutamate dehydrogenase (GDH) is a hexameric enzyme that catalyzes the reversible conversion of glutamate to α-ketoglutarate and ammonia while reducing NAD(P)⁺ to NAD(P)H. It is found in all living organisms serving both catabolic and anabolic reactions. In mammalian tissues, oxidative deamination of glutamate via GDH generates α-ketoglutarate, which is metabolized by the Krebs cycle, leading to the synthesis of ATP.

View Article and Find Full Text PDF

Mammalian glutamate dehydrogenase (GDH), a nuclear-encoded enzyme central to cellular metabolism, is among the most abundant mitochondrial proteins (constituting up to 10% of matrix proteins). To attain such high levels, GDH depends on very efficient mitochondrial targeting that, for human isoenzymes hGDH1 and hGDH2, is mediated by an unusually long cleavable presequence (N53). Here, we studied the mitochondrial transport of these proteins using isolated yeast mitochondria and human cell lines.

View Article and Find Full Text PDF

Human hGDH2 arose via duplication in the apes and driven by positive selection acquired enhanced catalytic ability under conditions inhibitory to its precursor hGDH1 (common to all mammals). To explore the biological advantage provided by the novel enzyme, we studied, by immunohistochemistry (IHC) and immunofluorescence (IF), hGDH1 and hGDH2 expression in the human brain. Studies on human cortical tissue using anti-hGDH1-specific antibody revealed that hGDH1 was expressed in glial cells (astrocytes, oligodendrocytes, and oligodendrocyte precursors) with neurons being devoid of hGDH1 staining.

View Article and Find Full Text PDF

Besides the housekeeping glutamate dehydrogenase1 (hGDH1), humans have acquired, via a recent duplication event, a hGDH2 isoenzyme with distinct functional properties and tissue expression profile. GDH catalyzes the reversible deamination of glutamate to α-ketoglutarate while reducing NAD(P) to NAD(P)H. As the generated NADPH can be used in bio-synthetic pathways, we studied here the expression of hGDH1 and hGDH2 in human steroidogenic tissues using specific antibodies.

View Article and Find Full Text PDF

Manganese (Mn) is an essential trace element that serves as co-factor for many important mammalian enzymes. In humans, the importance of this cation is highlighted by the fact that low levels of Mn cause developmental and metabolic abnormalities and, on the other hand, chronic exposure to excessive amounts of Mn is characterized by neurotoxicity, possibly mediated by perturbation of astrocytic mitochondrial energy metabolism. Here we sought to study the effect of Mn on the two human glutamate dehydrogenases (hGDH1 and hGDH2, respectively), key mitochondrial enzymes involved in numerous cellular processes, including mitochondrial metabolism, glutamate homeostasis and neurotransmission, and cell signaling.

View Article and Find Full Text PDF

Glutamate Dehydrogenase (GDH) is central to the metabolism of glutamate, a major excitatory transmitter in mammalian central nervous system (CNS). hGDH1 is activated by ADP and L-leucine and powerfully inhibited by GTP. Besides this housekeeping hGDH1, duplication led to an hGDH2 isoform that is expressed in the human brain dissociating its function from GTP control.

View Article and Find Full Text PDF

Background: Patients with clinically isolated syndrome (CIS) demonstrate brain hemodynamic changes and also suffer from difficulties in processing speed, memory, and executive functions.

Objective: To explore whether brain hemodynamic disturbances in CIS patients correlate with executive functions.

Methods: Thirty CIS patients and forty-three healthy subjects, matched for age, gender, education level, and FSIQ, were administered tests of visuomotor learning and set shifting ability.

View Article and Find Full Text PDF

Mammalian glutamate dehydrogenase (GDH) is an evolutionarily conserved enzyme central to the metabolism of glutamate, the main excitatory transmitter in mammalian CNS. Its activity is allosterically regulated and thought to be controlled by the need of the cell for ATP. While in most mammals, GDH is encoded by a single GLUD1 gene that is widely expressed (housekeeping; hGDH1 in the human), humans and other primates have acquired via retroposition a GLUD2 gene encoding an hGDH2 isoenzyme with distinct functional properties and tissue expression profile.

View Article and Find Full Text PDF

Background And Purpose: To investigate the relation between hemodynamic measurements and memory function in patients with clinically isolated syndrome (CIS).

Methods: Forty CIS patients were administered tests of verbal short-term/working memory and passage learning. Using dynamic susceptibility contrast MRI cerebral blood volume (CBV), cerebral blood flow and mean transit time values were estimated in 20 cerebral regions of interest, placed in normal appearing white matter (NAWM) and normal appearing deep gray matter structures, bilaterally.

View Article and Find Full Text PDF

While the evolutionary changes that led to traits unique to humans remain unclear, there is increasing evidence that enrichment of the human genome through DNA duplication processes may have contributed to traits such as bipedal locomotion, higher cognitive abilities and language. Among the genes that arose through duplication in primates during the period of increased brain development was GLUD2, which encodes the hGDH2 isoform of glutamate dehydrogenase expressed in neural and other tissues. Glutamate dehydrogenase GDH is an enzyme central to the metabolism of glutamate, the main excitatory neurotransmitter in mammalian brain involved in a multitude of CNS functions, including cognitive processes.

View Article and Find Full Text PDF

Objectives: The coexistence of systemic lupus erythematosus (SLE) and multiple sclerosis (MS) in the same individual has rarely been described. Our objective was to report on the prevalence, clinical characteristics, and prognosis of cases fulfilling the criteria for both SLE and MS.

Methods: We utilized existing patient cohorts from the Departments of Rheumatology and Neurology, University of Crete, and screened patients diagnosed with either SLE (n = 728) or MS (n = 819) for features of both diseases.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have been shown to be a powerful approach to identify risk loci for neurodegenerative diseases. Recent GWAS in Parkinson's disease (PD) have been successful in identifying numerous risk variants pointing to novel pathways potentially implicated in the pathogenesis of PD. Contributing to these GWAS efforts, we performed genotyping of previously identified risk alleles in PD patients and control subjects from Greece.

View Article and Find Full Text PDF

Introduction: Familial amyloid polyneuropathy is characterized by transthyretin (TTR) deposition in various tissues, including the kidneys. While deposition induces organ dysfunction, renal involvement in TTR-related amyloidosis could manifest from proteinuria to end-stage kidney failure. As proteinuria is considered result of glomerular filtration barrier injury we investigated whether TTR deposition affects either glomerular basement membrane (GBM) or podocytes.

View Article and Find Full Text PDF

Glutamate dehydrogenase (GDH) is a crucial enzyme on the crossroads of amino acid and energy metabolism and it is operating in all domains of life. According to current knowledge GDH is present only in one functional isoform in most animals, including mice. In addition to this housekeeping enzyme (hGDH1 in humans), humans and apes have acquired a second isoform (hGDH2) with a distinct tissue expression profile.

View Article and Find Full Text PDF

Mammalian glutamate dehydrogenase is an allosterically regulated enzyme that is central to glutamate metabolism. It contributes to important cellular processes, including Krebs cycle anaplerotic mechanisms, energy production, and ammonia homeostasis. In addition to this housekeeping hGDH1, humans have acquired through duplication an hGDH2 isoenzyme expressed in neural tissues with distinct regulatory properties.

View Article and Find Full Text PDF