Gas phase thermal decomposition of CF(3)OC(O)OOC(O)F and CF(3)OC(O)OOCF(3) was studied at temperatures between 64 and 98 degrees C (CF(3)OC(O)OOC(O)F) and 130-165 degrees C (CF(3)OC(O)OOCF(3)) using FTIR spectroscopy to follow the course of the reaction. For both substances, the decompositions were studied with N(2) and CO as bath gases. The rate constants for the decomposition of CF(3)OC(O)OOC(O)F in nitrogen and carbon monoxide fit the Arrhenius equations k(N)2 = (3.
View Article and Find Full Text PDFThe bis(trifluoromethyl)phosphinous acid, (CF3)2P-O-H, is the only known example of a thermally stable phosphinous acid. Although this compound has been known since 1960, little is known about the chemistry of this extraordinary compound; this might be due to the tedious, and in some part risky, synthesis that was originally published. An improved, simple, and safe synthesis that is based on the treatment of the easily accessible (CF3)2PNEt2, with at least three equivalents of p-toluene sulfonic acid, is presented.
View Article and Find Full Text PDFThe trioxide, CF(3)OC(O)OOOC(O)OCF(3), reacts with NO(2) at 0 degrees C to yield the new peroxynitrate, CF(3)OC(O)OONO(2), which is stable for hours at room temperature. It is spectroscopically characterized and some thermal properties are reported. From the vapor pressure, ln(p/p(0)) = 14.
View Article and Find Full Text PDFThe synthesis of ClC(O)OONO(2) is accomplished by photolysis of a mixture of Cl(2), NO(2), and CO in large excess of O(2) at about -70 degrees C. The product is isolated after repeated trap-to-trap condensation. The solid compound melts at -84 degrees C, and the extrapolated boiling point is 80 degrees C.
View Article and Find Full Text PDFFC(O)Br has been synthesized, and its IR spectrum in the gas phase and isolated in an Ar matrix, as well as, its Raman spectrum in the solid state at -196 degrees C has been analyzed. Its molecular structure has been determined and its UV has been measured. FC(O)Br and FC(O)Cl has been photodissociated in an argon matrix at 17 K with a 193 nm laser.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2004
For two decades, the peroxychloroformyl radical, ClC(O)OO, has played a central role in models of the chemical stability of the Venus atmosphere. No confirmation, however, has been possible in the absence of laboratory measurements for ClC(O)OO. We report the isolation of ClC(O)OO in a cryogenic matrix and its infrared and ultraviolet spectral signatures.
View Article and Find Full Text PDFThe open-chain trioxide CF(3)OC(O)OOOC(O)OCF(3) is synthesised by a photochemical reaction of CF(3)C(O)OC(O)CF(3), CO and O(2) under a low-pressure mercury lamp at -40 degrees C. The isolated trioxide is a colourless solid at -40 degrees C and is characterised by IR, Raman, UV and NMR spectroscopy. The compound is thermally stable up to -30 degrees C and decomposes with a half-life of 1 min at room temperature.
View Article and Find Full Text PDFThe conformational properties and the geometric structure of perfluoromethyl fluorocarbonyl peroxide, CF(3)OOC(O)F, have been studied by matrix IR spectroscopy, gas electron diffraction, and quantum chemical calculations (HF, B3LYP, and MP2 methods with 6-311G* basis sets). Matrix IR spectra imply a mixture of syn and anti conformers (orientation of the C=O bond relative to the O-O bond) with DeltaH degrees = H(anti) degrees - H(syn) degrees = 2.16(22) kcal/mol.
View Article and Find Full Text PDFThe synthesis of CF(3)OC(O)OOC(O)F is accomplished by the photolysis of a mixture of (CF(3)CO)(2)O, FC(O)C(O)F, CO, and O(2) at -15 degrees C using a low-pressure mercury lamp. The new peroxide is obtained in pure form in low yield after repeated trap-to-trap condensation and is characterized by NMR, IR, Raman, and UV spectroscopy. Geometrical parameters were studied by ab initio methods [B3LYP/6-311+G(d)].
View Article and Find Full Text PDF