At-home testing with rapid diagnostic tests (RDTs) for respiratory viruses could facilitate early diagnosis, guide patient care, and prevent transmission. Such RDTs are best used near the onset of illness when viral load is highest and clinical action will be most impactful, which may be achieved by at-home testing. We evaluated the diagnostic accuracy of the QuickVue Influenza A+B RDT in an at-home setting.
View Article and Find Full Text PDFObjective: Although the clinical and biological importance of calcification is well recognized for the extracerebral vasculature, its role in cerebral vascular disease, particularly, intracranial aneurysms (IAs), remains poorly understood. Extracerebrally, 2 distinct mechanisms drive calcification, a nonatherosclerotic, rapid mineralization in the media and a slower, inflammation driven, atherosclerotic mechanism in the intima. This study aims to determine the prevalence, distribution, and type (atherosclerotic, nonatherosclerotic) of calcification in IAs and assess differences in occurrence between ruptured and unruptured IAs.
View Article and Find Full Text PDFMultiphoton-induced second-harmonic generation and two-photon excitation enable imaging of collagen and elastin fibers at micron-level resolution to depths of hundreds of microns, without the use of exogenous stains. These attributes can be leveraged for quantitative analysis of the 3D architecture of collagen and elastin fibers within intact, soft tissue specimens such as the artery and bladder wall. This architecture influences the function of intramural cells and also plays a primary role in determining tissue passive mechanical properties.
View Article and Find Full Text PDFAutologous veins are the most widely used grafts for bypassing small arteries in coronary and peripheral arterial occlusive diseases. However, they have limited availability and cause donor-site morbidity. Here, we report a direct comparison of acellular biodegradable synthetic grafts and autologous veins as interposition grafts of rat carotid arteries, which is a good model for clinically relevant small arteries.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
November 2018
Introduction: Connecting local hemodynamics, biomechanics, and tissue properties in cerebral aneurysms is important for understanding the processes of wall degeneration and subsequent aneurysm progression and rupture. This challenging problem requires integration of data from multiple sources.
Methods: This paper describes the tools and techniques developed to integrate data from multiple sources, including clinical information, 3D imaging, intraoperative videos, ex vivo micro-computed tomography (CT), and multiphoton microscopy.
A fundamental mechanism of tissue regeneration from biodegradable synthetic acellular vascular grafts is the effective interplay between graft degradation, erosion and the production of extracellular matrix. In order to understand this crucial process of graft erosion and degradation, we conducted an investigation of grafts ( = 4 at days 1, 4, 7, 10 each) exposed to enzymatic degradation. Herein, we provide constitutive relationships for mass loss and mechanical properties based on much-needed experimental data.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
June 2019
The biodegradable elastomeric polyester poly(glycerol sebacate) (PGS) was developed for soft-tissue engineering. It has been used in various research applications such as wound healing, cartilage tissue engineering, and vascular grafting due to its biocompatibility and elastomeric properties. However conventional PGS manufacture is generally limited by the laborious reaction conditions needed for curing which requires elevated reaction temperatures, high vacuum and multi-day reaction times.
View Article and Find Full Text PDFThe evolution of intracranial aneurysms (IAs) is thought to be driven by progressive wall degradation in response to abnormal hemodynamics. Previous studies focused on the relationship between global hemodynamics and wall properties. However, hemodynamics, wall structure and mechanical properties of cerebral aneurysms can be non-uniform across the aneurysm wall.
View Article and Find Full Text PDF